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The articles contained in this magazine are provided solely by the authors, and the author(s) of each article 
appearing in this magazine is/are solely responsible for the content thereof as well as personal data, which is used 
anonymously or complied with applicable data privacy laws or regulations. United Imaging Healthcare makes no 
representation or warranties, expressly or impliedly, with respect to the accuracy, timeliness, reliability, legitimacy, 
applicability, fitness, originality, or completeness of the contents of this magazine. United Imaging Healthcare 
assumes no legal responsibility or liability for any error, omission, or illegality with respect to the material 
contained within. 
 
All articles contained in this magazine only represent the opinions and views of the authors and do not implicitly 
or explicitly represent any official positions or policies, or medical opinions of United Imaging Healthcare or the 
institutions with which the authors are affiliated unless this is clearly specified. Discussions of any brand, services, 
or products in the magazine should not be construed as promotion or endorsement thereof. 
 
Articles published in this magazine are intended to inspire further general scientific research, investigation, 
understanding, and discussion only and are NOT intended to and should not be relied upon as recommending or 
promoting a specific medical advice, method, diagnosis, or treatment by physicians for any particular individual, 
nor to replace the advice of a medical doctor or other healthcare professional. Any individual wishing to apply the 
information in this magazine for the purposes of improving their own health should not do so without consulting 
with a qualified medical practitioner. All patients need to be treated in an individual manner by their personal 
medical advisors. The decision to utilize any information in this magazine is ultimately at the sole discretion of the 
reader, who assumes full responsibility for any and all consequences arising from such a decision. United Imaging 
Healthcare makes no representations or warranties with respect to any treatment, action, or application of 
medication or preparation by any person following the information offered or provided within or through the 
magazine. United Imaging Healthcare shall remain free of any fault, liability, or responsibility for any loss or harm, 
whether real or perceived, resulting from the use of information in this magazine. 
 
The articles included in this magazine may contain work in progress, which represents ongoing research and 
development. Such technologies are not available for sale in China or the United States for clinical use and also 
may not available for such sales in other countries around the world. 
 
Please note that the magazine is intended to be distributed only within a limited scope instead of publication. 
 
If you have any questions about the magazine, or simply wish to reach out to us for any other reasons, you are 
welcomed to contact us at the following email address: compliance@united-imaging.com 
 

Disclaimer 
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Editorial: The Future of Radiology 
 
Omer Aras, M.D.  
Department of Radiology, Memorial Sloan Kettering Cancer Center 
New York, USA 
 
 
Radiological images have become crucial in clinical practice 
for both diagnosis and treatment monitoring of a range of 
diseases. Considering the advancements in computing 
power, deep learning algorithms, and the availability of a 
large amount of data from medical imaging, clinical records, 
and wearable health monitors, artificial intelligence (AI) is 
poised to play an increasingly prominent role in medicine 
and healthcare. Specifically, in the field of radiology, every 
aspect of the imaging workflow can be improved by AI. AI 
has the potential to boost the value of medical images by 
improving imaging efficiency, image quality, and imaging 
assessment. 

In chest radiology, multiple commercial algorithms (from 
several vendors) have been cleared by the United States 
Food and Drug Administration for clinical use to detect and 
segment nodules mainly on computed tomography (CT) 
images. In addition to lesion detection and segmentation, 
these AI algorithms can also provide information on nodule 
characteristics, improve the conspicuity of nodules, perform 
automatic LUNG-RADS reporting, and provide a lung cancer 
prediction score to assess the probability of the nodule 
being malignant in nature. In addition to the evaluation of 
cancer in the lung, AI algorithms can also evaluate 
pulmonary pathologies such as pneumonia, chronic 
obstructive pulmonary disease, pulmonary fibrosis, and 
pulmonary effusion. In this issue of uINNOVATION-GLOBAL, 
readers will find an interesting article on study of AI-based 
lung nodule detection from CT images1 conducted on over 
600 patients that shows that the use of AI resulted in better 
sensitivity and accuracy compared to subjective readings.    

Among the available imaging modalities, magnetic 
resonance imaging (MRI) has many strengths for 
morphological and functional imaging, generating excellent 
soft tissue contrast at a high spatial resolution throughout 

 
1 This product is a work in progress; the information in this article represents 
ongoing research and development. No 510k application has been filed with the 
FDA. This product is not available for sale in the U.S. for clinical uses and also may 
not be available for such sales in other countries 

 

the body. There have been efforts to reduce the 
examination time of MRI. Excessive scanning time reduces 
the daily average number of examinations that can be 
performed and causes patient discomfort. Deep learning 
has recently emerged as a tool to accelerate MRI 
examination time. United Imaging Healthcare ’s AI-assisted 
Compressed Sensing (ACS) technology has been developed 
to provide an integrated MRI acceleration solution 
combining compressed sensing, parallel imaging, half 
Fourier analysis, and AI. An interesting article on this subject 
is presented in this edition of uINNOVATION-GLOBAL, in 
which the usage of ACS for different body organs 
demonstrates either superior or comparable image quality 
with reduced scanning time as compared to conventional 
MR acquisition.     

In recent years, cardiovascular magnetic resonance (CMR) 
has emerged as a safe, non-invasive, radiation- and 
iodinated contrast medium-free technique allowing for a 
comprehensive assessment of cardiac function, dimensions, 
perfusion, and viability. As such, it may soon be among the 
most comprehensive and powerful imaging modalities for 
evaluating the cardiovascular system. CMR parameters are 
also potentially useful for repeat imaging and tracking 
disease progression or therapy efficacy. With the 
advancement of cardiac CT imaging technology, CT 
Coronary Angiogram (CTCA) is the most advanced diagnostic 
tool for detecting and monitoring coronary artery disease. 
In this issue, you will find two articles from Dr. Gregory 
Lanza and Dr. Rochita Venkataramanan sharing their 
experience using MRI and CT to manage patients with 
cardiovascular disease.  

Molecular imaging provides a method for studying the 
biological processes at the cellular and molecular level in 
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humans and in other living systems. 18F-FDG PET is widely 
used in cancer imaging for diagnosis, staging, and 
monitoring of treatment response. In the past decade, 
several radiotracers have been introduced, including 18F-
Fluciclovine, 18F-DCFPyL, 68Ga-PSMA, 18F-Fluoroestradiol, 
68Ga-DOTATATE, and 64Cu-DOTATATE, improving the ability of 
PET to stage and characterize diseases. As more potential 
PET radiotracers are being discovered, they have the 
potential to expand the use of molecular imaging for further 
clinical disciplines. In this issue, you will find two articles 
from Dr. Remy Lim and Dr. Jun Zhao highlighting their 
clinical adoptions of PET/CT and PET/MR technologies in 
conjunction with novel radiotracers. 

The availability of total-body PET devices has revolutionized 
the breadth of PET clinical and research studies. Since their 
introduction in 2018, total-body PET devices have attracted 
considerable attention in the medical community. The 
increased sensitivity of total-body PET allows faster imaging, 
use of a lower injected dose, and use of delayed scan start 
times to enhance lesion contrast. This edition of 
uINNOVATION-GLOBAL contains an interview with one of 
the creators of total-body PET, Dr. Simon Cherry, who gives 
us his personal insights into the technology and where it 
might be going in the future. Deep learning-based 
reconstruction and analysis algorithms are potentially 
immensely valuable to manage the increasing volumes of 
acquired imaging data that TB-PET generates. Dr. Kenta 
Miwa et. al. puts together a preliminary investigation on the 
evaluation of deep learning-based PET image reconstruction 
in an article included in this issue.  

Notably, poor health outcomes can result from delays in 
diagnosis and treatment due to a lack of imaging equipment 
and personnel. More direction is needed for AI applications 
to help low- and middle-income countries (LMICs) in 
particular to increase their access to the diagnostic imaging 
and nuclear medicine tools and to address the rising burden 
of cancer. In the commentary article within this issue of 
uINNOVATION-GLOBAL, Dr. Harsh Mahajan and Dr. Vidur 
Mahajan have highlighted their important perspective on 
the future of radiology and how emerging technologies like 
AI can help LMICs. 

Intelligent diagnostic imaging workflows have also become 
possible due to the rapid development of AI technology in 
recent years. With the goal of significantly reducing the 
repetitive work of radiologists and technologists and 
improving patient care, intelligent diagnostic imaging 
workflows may perform functions such as intelligent 
authentication of patient identity, intelligent voice 
interaction, intelligent patient positioning, and intelligent 
scanning parameter setting throughout the entire image 
scanning process. Although medical imaging has improved 
over the years, it still faces the challenges of long 
examination times and low acceleration rates. The future of 
radiology will undoubtedly see advances in precision 
medicine aided by AI tools. Future synergies with other 
emerging diagnostic tools will also be required. 

 
 

Dr. Omer Aras  
Guest Editor

 

Guest Editor Biography 
 

 

 

Dr. Omer Aras 

Dr. Aras is a physician-scientist with formal training in both clinical radiology/nuclear radiology 
and molecular imaging research. His clinical interests lie in oncologic imaging, with a focus on 
genitourinary and bone marrow cancer. His primary research interest involves developing novel 
and innovative molecular imaging approaches for cancer diagnostics and combining and utilizing 
the biology, nanotechnology, chemistry with advanced non-invasive imaging methods 
(predominantly PET/optical imaging) to create novel imaging agents that allow much earlier 
detection and improve therapy monitoring of cancer. As a result of translational work, much of it 
completed under his own initiative, he has published a number of peer-reviewed papers in 
biomedical journals and been invited to present his work at national and international venues. 
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Quantitative assessment of AI-based chest CT lung nodule detection in 
lung cancer screening: future prospects and main challenges 
 
Marufjon Salokhiddinova, Ruth Awotwea, Munojat Ismailovaa  
aRadiology Department, Republic Zangiota No-2 COVID Specialized Hospital, Uzbekistan 
 
 
1. Introduction 
Lung cancer is the most common cause of cancer-related 
death. It is known for being particularly aggressive. Early 
detection of asymptomatic lung cancer is crucial for optimal 
treatment, which can greatly increase patients' survival 
rates. Since the beginning of the twentieth century, the 
incidence in the population has increased several times. Its 
growth is especially pronounced in industrialized countries, 
where lung cancer ranks first in the structure of oncological 
morbidity. Lung cancer also ranks among the top three 
cancers in terms of incidence rates for both men and 
women. As the precursor, lung nodules are the main 
indication of lung cancer. Therefore, lung screening by CT 
exams has been recommended for identifying and 
characterizing nodules to detect early lung cancer.  

The manifestation of lung nodules in CT images is 
complicated because of their irregular shapes, broad gray 
value range, and varied scale [1]. It is a time consuming and 
challenging task to effectively detect nodules for 
Radiologists. Additionally, differentiating benign from 
malignant nodules is another challenging task. Currently, 
pulmonary nodules incidentally observed on CT exams are 
handled by following consensus standards [2, 3]. But that 
has several drawbacks. Because the Radiologist’s 
interpretation of each lesion is a complicated process, the 
evaluation performance is highly dependent on the 
experience or skills of the Radiologist, so the diagnosis is 
not always consistent. Considering the low efficiency of 
human reading, some patients might miss the ideal 
opportunity for treatment [4,5,6,7]. 

The computer-aided automatic solution has been proposed 
and utilized to address these challenges. It is expected to be 
able to overcome physical human limitations, such as the 
limited gray level recognition of the human visual system, 
fatigue, and distraction [8]. It can also provide diagnostic 
results in a repeatable and reliable manner. It can therefore 

be used to reduce Radiologists’ workloads, locate nodules 
that Radiologists might overlook, and improve diagnostic 
accuracy [4]. Recently-developed artificial intelligence (AI) 
technology has made the computer-aided automatic 
solution even more promising. Deep learning, as one subset 
of AI technology, allows the model to learn high-dimensional 
abstract features from vast amounts of data and empowers 
the model to handle complex tasks. AI has demonstrated 
many compelling advantages and accomplishments 
[9,10,11,12,13] in imaging diagnosis and/or evaluation. 

In this study, we aim to quantitatively assess the 
performance of AI-assisted reading versus traditional 
radiology reports in detecting lung nodules and evaluate AI 
as a method of characterizing and classifying lung nodules 
in lung cancer screening. 

 

2. Materials and Methods 

2.1 Data Preparation and Categorization  

The study included 635 patients with a mean age of 52±9 
years old. They underwent chest CT exam from May to 
October 2021 at Republic Zangiota No-2 COVID Specialized 
Hospital, Uzbekistan. Scans were not included in the study 
if: 

(a) All lung lobes were not fully visible in the field of view                                                               
(b) The image contained motion artifacts                                                                              
(c) The image did not meet Digital Imaging and 
Communications in Medicine standards                           
(d) The Radiologists responsible for ground truth labeling 
were unable to confidently annotate the images [14] 

 

2.2 CT Image Acquisition 

For non-contrast-enhanced chest CT scanning, the uCT® 550 
scanner (United Imaging Healthcare, Shanghai, China) was 
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used. The collimation of the CT detector was 256 x 0.625 
mm, 64 x 0.625 mm, 96 x 0.6 mm, and 320 x 0 x 5 mm, 
respectively. In the supine position, each subject underwent 
an inspiratory CT scan during a single breath hold. The tube 
voltage was set to be either 120 kV or 100 kV depending on 
the patient size. The dose modulation was on, and the tube 
current ranged from 50 to 200 mAs. Slice thickness ranged 
from 0.625 to 1.0 mm. 
 
2.3 Radiologist Interpretation 

One Radiologist with over five years of experience reviewed 
the chest CT images. RadiAnt DICOM Viewer was used to 
review the studies. The Radiologist was given unlimited 
reading time and the option to adjust the display based on 
scan-specific characteristics to ensure optimal reading 
quality. Nodules in our dataset were divided into five types 
based on the National Comprehensive Cancer Network 
(NCCN) recommendations for lung cancer screening 
(version 2.2019): solid nodules (<5 or >5 mm), subsolid 
nodules (<5 or >5 mm), and calcified nodules. 

 

2.4 Artificial Intelligence-assisted Reading 

On chest CT images, uAI® Discover Chest2 (United Imaging 
Healthcare, Shanghai, China) can automatically identify and 
measure lung nodules. The CT console automatically sends 

the CT images to the AI server for lung nodule detection 
once acquired. It took about 2 to 4 minutes to transfer and 
process the whole volume images of each patient. In short, 
this system automatically generates a bounding box that 
shows the characteristics of the suspected nodule, such as 
its diameter and volume, as well as its components (solid, 
part-solid, or nonsolid). 
 
2.5 AI Model Development 

Recent research [15,16,17] studies have proposed using 
deep learning approaches for the detection and 
classification of lung nodules with CT images, as such 
approaches have demonstrated significant improvements in 
both tasks. In this work, the automated processing was 
performed using United Imaging Intelligence's uAI Discover 
Chest AI-based approach. For automated nodule detection, 
the uAI Discover Chest employs cascading feature pyramids 
and a heterogeneous convolutional neural network in its 
algorithm. Conventional deep learning approaches can only 
identify objects at a single scale – they cannot handle items 
with significant size variations. As shown in Figure 1, the uAI 
Discover Chest approach uses a 3D feature pyramids 
network (FPN) with V-Net to specifically solve the large-scale 
variance problem. 

 

 

 
Figure 1. The architecture of the feature pyramid network (FPN). 

 
2 This product is a work in progress; the information in this article represents 
ongoing research and development. No 510k application has been filed with the 
FDA. This product is not available for sale in the U.S. for clinical uses and also may 
not be available for such sales in other countries 
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2.6 Nodule Categorization 

Lung nodules are divided into three main types according to 
the NCCN guideline [18]: solid, part-solid, and non-solid 
nodules. Each  

type has a unique management process. Solid nodules are 
further divided into strata of <5 and >5 mm, part-solid 
nodules <5 and >5 mm, and calcified nodules. Typical 
nodules of different types are shown in Figure 2.

 

i)                                        ii) 

 

iii)                                         iv) 

 

v) 

 

Figure 2. Nodule Categorization according to NCCN. i) Solid >5 mm, ii) Solid <5 mm, iii) Subsolid >5 mm, iv) Subsolid <5 mm, v) Calcified. 
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2.7 Panel Review 

Two Radiologists with 15 and 20 years of experience in 
chest radiology were included in the review panel to 
evaluate the results reported by the Radiologist and AI 
system. The review panel was to establish a reference 
standard for the presence of nodules. Based on the 
standard, the figure of merit (FOM) could be calculated by 
including the number of false negatives, true negatives, 
false positives, and true positives. For instance, a lung 
nodule was regarded as a false-positive nodule if it was 
discovered by a Radiologist or detected by AI-assisted 
reading but was not confirmed by the review panel. The 
system interface of the uAI Discover Chest assisted lung 
nodule evaluation is shown in Figure 3. 

  

2.8 Statistical analysis 

In this study, 1082 nodules were included from the data of 
635 patients, further classified as 778 (<5mm = 513 and >5 
mm = 265) solid nodules, 283 (<5mm = 186 and >5 mm = 
97) subsolid nodules and 21 calcified nodules. Statistical 
analysis was performed using MedCalc®, version 19.3 
(MedCalc Software Ltd). Sensitivity and accuracy were 

measured to evaluate the performance of lung nodule 
detection, using the following equations, respectively: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = !"
(!"$%&)	

     (1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = !"$	!&	
!"$%"$!&$%&	

  (2) 

where TP is the true positive, TN is the true negative, FP is 
the false positive, and FN is the false negative. FP is an 
outcome where the model incorrectly predicts a nodule in 
the lung CT without its existence.  

   

3. Results 

In the detection of solid nodules, the sensitivity and 
accuracy were 96.80% and 94.08% for AI-reading and 
89.50% and 85.34% for radiological observation, 
respectively. The sensitivity and accuracy for <5 mm solid 
nodules were 96.80% and 94.34% with AI-reading and 
91.70% and 88.65% with radiological observation, and for >5 
mm solid nodules were 96.90% and 93.58% with AI-reading 
and 85.10% and 79.02% with radiological observation, 
respectively. 

 

 
Figure 3. uAI® Discovery Chest-assisted lung nodule evaluation system interface 

 
A similar analysis was performed for sub-solid and calcified 
nodules. The sensitivity and accuracy were 93.34% and 
89.04% for AI-reading and 80.00% and 75.26% for 

radiological observation, respectively, in the sub-solid 
nodule detection. The sensitivity and accuracy for <5 mm 
sub-solid nodules were 93.80% and 90.21% with AI-reading 
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and 87.10% and 82.32% with radiological observation, and 
for >5 mm sub-solid nodules were 92.50% and 86.86% with 
AI-reading and 67.40% and 63.36% with radiological 
observation, respectively.  

The sensitivity and accuracy of the AI-reading-based 
calcified nodule detection were 95.34% and 95.34%, and 

88.90% and 76.19% for Radiologist observation, 
respectively. The comparison of the detection performance 
between AI reading and Radiologist observation for all solid, 
subsolid, and calcified nodules is shown in Figure 4. Figure 5 
displays the bar graph of the sensitivity and accuracy of AI 
reading and Radiologist observation for <5 mm and >5 mm 
solid and subsolid nodules detection. 

 

 
Figure 4. Bar graph of the sensitivity and accuracy of AI reading and Radiologist observation for solid, subsolid and calcified nodules detection. 

 

 
Figure 5. Bar graph of the sensitivity and accuracy of AI reading and Radiologist observation for a) <5 mm and >5 mm solid nodules and b) <5 mm and >5 mm subsolid nodule 

detection. 

 

4. Discussion 

The performance of AI reading and Radiologist observations 
were quantitively assessed in detecting multiple type 
nodules including solid, subsolid, and calcified ones. The 
assessment showed that the performance of AI was better 
than Radiologist performance in all nodule categories. This 

study suggests that AI was more sensitive and accurate in 
detecting the nodules. It is consistent with most other 
studies that AI is a reliable and sensitive method to use in 
lung nodule detection. 

Compared to earlier studies [19,20,21], uAI Discover Chest 
introduced several key advanced techniques. First, it used a 
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classification network to further reduce false positives and 
to analyze large-scale data. The model demonstrated a 
significantly higher identification rate in sensitivity and 
accuracy than Radiologists achieved. By utilizing the 
threshold ReLU, this heterogeneous network not only 
reduced the overfitting problem but also improved 
detection performance. The detection of solid nodules had 
the highest sensitivity as compared to sub-solids and 
calcified lesions. The results obtained in this work showed 
that the overall performance of uAI Discover Chest 
algorithm in detecting lung nodules of different sizes and 
different types depicted better outcomes as compared to 
the Radiologist’s assessment, especially in detecting nodules 
that the Radiologist missed. 

Nevertheless, this study had a limitation that need to be 
addressed in the future. There was no true gold standard 
available for the comparison of outcomes. For the 
evaluation in this study, a reference standard was carried 
out by the two Radiologists having an experience of 8 years 
and 7 years respectively. In such cases, there is a possibility 
of missing out fewer lung nodules which may lead to an 
inconsistency of obtained results. According to recent 
research, the performance of a cutting-edge artificial 
intelligence system for lung nodule detection and 
characterization is comparable to that of skilled 
Radiologists. Numerous AI studies discuss cutting-edge 
architectures for finding lung nodules, with the Radiologists' 
consensus as the reference standard [22,23,24].  

Finding all lung cancers, not all nodules, is the ultimate goal. 
Therefore, future research should concentrate on a 
reference standard that measures cancer detection and is 
based on histopathological evidence or follow-up imaging 
for at least 2 years (depending on morphology to judge the 
stability of lesions). Unfortunately, there are no publicly 
available datasets with a sizable number of CT-detected 
malignant nodules [25]. The NLST database is the largest 
database that is open to the public, but the metadata does 
not specify which nodules were biopsied. Therefore, even 
with all the available screening scans and knowledge of the 
pathological evidence, it is not always clear which CT lesions 
were cancerous. 

However, the issue of lack of data is currently being 
addressed by a variety of approaches, one of which is the 
creation and dissemination of databases that are open to the 
public. For instance, in 2017, the National Institutes of Health 

disseminated one hundred thousand labeled chest 
radiographs [26,27] in their collection. The labels of the data 
were obtained by applying the technology of natural 
language processing into reading the radiology reports. It 
makes it possible to implement bigger databases and skip the 
human labeling step. It will also resolve the imperfection in 
statistical significance and make it conducive to further study.  

The methods employed in lung nodule image classification 
have shown massive progress from user-defined to 
technological feature-based methods. Though the accuracy 
achieved with the user-defined features is over 90%, as seen 
in the work of Liu and Hou [28], and Wei and Cao [29], it is 
solely based on the professional understanding and analysis 
of nodules which is very subjective and lacks uniformity and 
standardization. Performance can be improved by 
combining it with other methods like generic features. Most 
research studies have resorted to using AI tools in 
developing algorithms, which are most efficient in 
identifying features of imaging and making precise 
differentiation, improving lung cancer detection [30]. AI can 
be employed to improve the efficiency of Radiologists in 
nodule detection. It must meet several requirements, such 
as processing speed, cost of training, maintenance, and 
implementation to detect various shapes, and low numbers 
of false positives, for Radiologists to use it routinely [31,32]. 

The use of a convolutional neural network (CNN) like the 
generative adversarial network (GAN) is another method 
that can be utilized to circumvent the lack of large datasets 
[33]. This method involves the generation of data sets that 
are fabricated to contain characteristics that are analogous 
to those of a specific training dataset. These GANs could be 
taught to learn representative features in a totally 
unsupervised fashion through the process of training [31]. 
The labeling step can be skipped entirely because the 
features are generated rather than chosen from images that 
already exist in the database. GANs can either be integrated 
into supervised strategies or used on their own without 
supervision. 

 

5. Conclusion 

In conclusion, the experiment’s results demonstrated that 
the uAI Discover Chest outperformed the Radiologists’ 
assessment on average in terms of lesion identification 
sensitivity. Furthermore, the performance of the uAI 
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Discover Chest algorithm to identify lung nodules is 
consistent and less subjective compared to assessments 
made by skilled Radiologists regardless of lung nodule size. 
Results obtained in this study also suggest that the use of 
uAI Discover Chest for clinical screening can greatly benefit 
Radiologists in making a substantial diagnosis. The uAI 
Discover Chest can be considered an effective tool due to its 
advantages such as consistent performance, faster 
processing, and high clinical efficiency.   

 

6. Image/Figure Courtesy 

All images are the courtesy of Republic Zangiota No-2 COVID 
Specialized Hospital, Taskent, Uzbekistan.   
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Abstract 

Magnetic Resonance (MR) Imaging plays a valuable role in 
diagnosis and prognosis of diseases. However, the longer 
scanning time of MR examinations is considered one of the 
biggest challenges faced by radiology departments and their 
patients. Recently, the introduction of artificial intelligence 
(AI) and deep learning methods have made it possible to 
enable ultra-fast image acquisition while maintaining high 
resolution image quality. In this work, a deep-learning-based 
reconstruction technique by United Imaging Healthcare 
called AI-Assisted Compressed Sensing (ACS) was evaluated 
qualitatively and quantitatively for its utility in routine 
clinical settings for brain, knee, kidney, liver and spine. MR 
scans were conducted with ACS and without ACS sequences. 
Images were assessed by a Radiologist for their quality, 
artifacts, diagnostic efficacy and sharpness. A quantitative 
assessment was done by calculating signal to noise ratio 
(SNR) and contrast to noise ratio (CNR). A qualitative 
evaluation by a Radiologist showed that the overall quality 
and diagnostic information in images acquired with ACS was 
similar to images obtained without ACS. Similarly, the SNR 
and CNR values obtained from images with ACS 
demonstrates significantly higher values (p < 0.05) as 
compared with images acquired without ACS. Results 
obtained in this study also found that ACS-enabled images 
not only maintain good quality and high resolution with 
better sharpness but also takes much lesser time for 
acquisition. In conclusion, the ACS technique is easy to 
implement in routine clinical settings, provides considerable 
image quality as compared to those techniques with routine 
MR sequences, and saves significant time during acquisition, 
which helps Radiologists and imaging technologists plan 
more cases with an adequate quality of images for 
diagnostic purposes. 

1. Introduction 

MRI can provide multi-parameter and multi-directional 
imaging of organs, which has significant application value in 
disease diagnosis and prognosis monitoring. Much effort 
has been made in recent years to enhance the field of view 
(FOV), resolution, and acquisition time of MRI sequences. 
The long examination duration is one of the challenges 
faced by radiology departments and the patients being 
examined, making it difficult for some patients to hold still 
during the examination, leading to motion artifacts. Longer 
scanning time not only introduces artifacts in acquired 
images but also significantly increases health cost and 
availability, especially in countries where the number of MR 
scanners are limited [1]. The MR imaging cycle is repeated 
many times during the acquisition process and the number 
of cycles depends on the quality of the image that is 
required. Signal-to-noise ratio (SNR) is primarily used in MR 
for image evaluation and quality assurance; however, SNR in 
MR is inherently constrained. One must find an acceptable 
trade-off between spatial resolution and scan time in most 
clinical applications. With more clinical examinations being 
performed, innovative accelerated imaging is urgently 
needed to enable ultra-fast scanning while producing high-
quality images [2]. In recent times, compressed sensing-
based techniques, (nonlinear mathematical models that 
successfully suppress noise bands and acceleration-induced 
artifacts), have been developed and employed in several 
clinical studies [3-5]. These technologies effectively reduce 
imaging time, but at the cost of image quality. The number 
of studies examining the image quality of compressed 
sensing for therapeutic applications is growing. 
Nevertheless, image quality of compressed sensing for 
cardiac, brain, liver, cervical artery, and prostate MR is 
poorly studied, and analysis of its use in clinical routine is 
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lacking. Several attempts have been made to overcome 
issues faced in compressed sensing as well as in other 
acceleration techniques such as half Fourier and parallel 
imaging methods. Recently, a deep- learning-based 
reconstruction technique called uAI®-Assisted Compressed 
Sensing (ACS) was introduced that is integrated with 
conventional acceleration techniques to provide better 
quality and reduced scanning time [6]. Despite the fact that 
ACS has been successfully applied to most body organs, its 
utility in a routine clinical setting has not been specifically 
tested. This study is thus conducted to measure 
performance of ACS in terms of scanning time, qualitative 
and quantitative parameters in depicting image quality in 
clinical settings.    

 

2. Materials and Methods 

2.1 Subjects   

In this study, 25 subjects were randomly selected to 
undergo MR examination of different body regions such as 

brain, spine, knee, liver and kidney prospectively. For each 
body region, five subjects were chosen so that five MR 
datasets were acquired for each body region, with and 
without the ACS technique, using different MR contrasts. 

 

2.2 MR Examination & protocols  

All MR exams were performed on the 3T uMR® 780 system 
(United Imaging Healthcare Shanghai, China) at Sprint 
Diagnostics in Hyderabad, India. Before the examination, a 
consent form was signed by all subjects. For brain MR 
scanning, a dedicated 24 channel head-neck coil was used, 
while spine exams were performed using a 32-channel 
spine coil. For knee MR, a dedicated 12 channel coil was 
used, while for liver and kidney a combination of 12 channel 
body coil and 12 channel spine coil was used. A complete 
detail of different contrast and protocols parameters used 
in this study are included in Table 1. All sequence 
parameters were kept identical to acquire data with ACS and 
without ACS in all body regions.  

 
Table 1. Scanning protocols of all sequences. 

 

Region Sequence Name ACS/Non-ACS Plane TR TE ST FA #slice AD AF_ACS
T1-weighted FSE Flair Non-ACS Axial 2023 22.96 5 90 23 02:01
T2-weighted FSE Flair with FS Non-ACS Axial 9000 103.32 5 90 23 02:24
T1-weighted FSE Non-ACS Axial 375 6.32 5 90 23 02:08
T2-weighted FSE Non-ACS Axial 5552 118.08 5 90 23 01:07
T1-weighted FSE Flair ACS Axial 2023 22.96 5 90 23 00:53 2.5
T2-weighted FSE Flair with FS ACS Axial 9000 103.32 5 90 23 01:30 2.5
T1-weighted FSE ACS Axial 375 6.32 5 90 23 00:57 2.5
T2-weighted FSE ACS Axial 5552 118.08 5 90 23 00:39 2.25
T1-weighted FSE Non-ACS Sagittal 750 9.26 4 90 11 01:49
T2-weighted FSE Non-ACS Sagittal 5421 121.8 4 90 11 02:21
T1-weighted FSE ACS Sagittal 750 9.26 4 90 11 00:51 2.25
T2-weighted FSE ACS Sagittal 5421 121.8 4 90 11 01:00 2.25
T2-weighted_NAVI Non-ACS Axial 2775 84.8 6 90 24 03:53
T2-weighted FSE with FS and BH ACS Axial 2950 98.42 6 90 24 00:17 2.25
T2-weighted_NAVI Non-ACS Axial 2700 84.8 6 90 24 04:08
T2-weighted FSE with FS and BH ACS Axial 8220 121 6 90 24 00:12 2.75
Proton Density FSE with FS Non-ACS Coronal 2780 38.3 3 90 26 03:34
T2-weighted FSE Non-ACS Sagittal 3200 118.08 3 90 26 04:10
T1-weighted FSE Non-ACS Axial 686 7.64 3 90 26 04:13
Proton Density FSE with FS ACS Coronal 2780 38.3 3 90 26 01:54 2
T2-weighted FSE ACS Sagittal 3200 118.08 3 90 26 01:49 2.25
T1-weighted FSE ACS Axial 686 7.64 3 90 26 01:47 2.25

FSE- Fast Spin Echo, FS- Fat Supression, BH- Breathhold, TR- Repetition Time, TE- Echo Time, ST- Slice Thickness, FA- Flip Angle, AD- 
Acquistion Duration, Acceleration Factor for ACS

Knee

Brain

Spine

Liver

Kidney
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2.3 Qualitative Evaluation  

After the MR scan, images were transferred to a local clinical 
picture archiving and communication system (PACS) system 
and uWS® MR workstation (United Imaging Healthcare, 
Shanghai, China) available on the premises. For the 
qualitative evaluation of images acquired in different body 
regions from all subjects, a standard scoring was designed  

 

to evaluate quality in terms of artifacts in images, sharpness 
of tissue edges, overall images quality and the diagnostic 
efficiency of images. The scores were given on a 5-point 
scale ranging between 0 to 4 based on the parameters. 
Detailed information on the scoring is given in Table 2 
below. A Radiologist with around 5 years of overall 
experience was asked to read all images and provide a 
rating based on the parameters shown here. 

Table 2. Scoring criteria for qualitative analysis. 

Parameters 
Scores 

0 1 2 3 4 

Image Artefact 
Non-Diagnostic Image 

Quality 
Major Artifacts Moderate Artifacts Mild Artifacts No Artifacts 

Image Sharpness Poor Intermediate Acceptable Good Perfect 

Overall Image Quality Poor Intermediate Acceptable Good Perfect 

Diagnostic Efficiency Poor Intermediate Acceptable Good Perfect 
 

 

2.4 Quantitative Evaluation  

Following the Radiologist's evaluation of qualitative criteria, 
all images were anonymised and transferred to a 
workstation. The quantitative assessment was further 
performed by calculating Signal to Noise ratio (SNR) and 
Contrast to Noise Ratio (CNR) in all the sequences for all 
body regions. To calculate these image quality parameters, 
multiple regions of interest (ROIs) in different tissue 
locations were drawn in the images to obtain average signal 
intensities and standard deviation of those signal 
intensities. The SNR and CNR measurements were 
performed using MATLAB (v.2018; MathWorks) functions 
using the formula given in Equation 1 and Equation 2. In 
order to demonstrate the capabilities of ACS enabled 
imaging, scanning time was also included in study as a 
quantitative parameter.   

𝑆𝑁𝑅 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑆𝑖𝑔𝑛𝑎𝑙	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑛𝑜𝑖𝑠𝑒…………………(1) 

𝐶𝑁𝑅 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑖𝑛	𝑠𝑖𝑔𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑛𝑜𝑖𝑠𝑒 ……………	(2) 

SNR and CNR values were obtained in all sequences for five 
regions obtained from the 25 subjects and further used to 
conduct statistical analysis and correlations with qualitative 
evaluations done by the expert Radiologist.   

 

2.5 Statistical analysis:  

All the statistical analysis was done in MedCalc®, version 
19.3 software (MedCalc Software Ltd). Qualitative and 
quantitative results obtained from both ACS and Non-ACS 
enabled image assessments were then compared using 
Mann-Whitney U-test and unpaired Student’s t-test. Using 
Pearson's correlation coefficient, SNR and CNR values from 
non-ACS sequences were compared with those obtained 
from ACS sequences (r). 

 

3. Results 
One Radiologist interpreted and scored the images acquired 
in five different regions of all 25 subjects included in this 
study and was asked to evaluate quality in terms of artifacts, 
sharpness, overall image quality and diagnostic efficiency 
for two groups (ACS vs. Non-ACS) of images. The mean score 
of all assessments done by the Radiologist for each body 
region examined in this study are presented in Figure 1. 
Mann-Whitney U-test conducted in this study shows no 
significant difference (p > 0.05) in qualitative image quality 
between images acquired with ACS and images acquired 
without ACS, which means comparable results for both 
groups. A Radiologist's qualitative evaluation found that the 
diagnostic quality with all four parameters such as image 



 19 

uINNOVATION-Global (Scientific Magazine of United Imaging Healthcare)  

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  
 

artifact, image sharpness, overall image quality and 
diagnostic efficacy of images acquired with ACS was similar 
to or better than those obtained without ACS (Figure 1).   

For the quantitative evaluation, SNR and CNR was measured 
in all sequences acquired with and without ACS as reported 
in Table 1 above for all body regions. The SNR values across 
all sequences for brain, spine, liver, kidney and knee were 
37.92 ± 1.79, 44.2 ± 5.26, 43.26 ± 1.37, 43.41 ± 1.62 and 
39.62 ± 3.63 in images acquired without ACS whereas the 
SNR values were 40.13 ± 2.00, 45.75 ± 4.90, 45.5 ± 2.20, 
45.36 ± 2.56 and 41.60 ± 4.51, respectively in images 
acquired with ACS as shown in Figure 2. Similarly, CNR 
values obtained for brain, spine, liver, kidney and knee were 
21.18 ± 5.23, 27.62 ± 5.90, 20.83 ± 3.62, 24.75 ± 2.95 and 
24.75 ± 2.95 for images acquired without ACS and the CNR 
values were 22.10 ± 5.71, 29.70 ± 5.78, 22.54 ± 4.20 28.7 ± 
3.68 and 28.80 ± 3.92, respectively for images acquired with 
ACS as shown in Figure 3. Both SNR and CNR values in 5 
different regions were found to be slightly better in images 
acquired with ACS as compared to images acquired without 
ACS.  According to the unpaired Student's t-test, ACS-based 
measurements showed substantially higher values (p < 0.05) 
for both SNR and CNR ac compared to non-ACS 

measurements. There was a good correlation (r = 0.93 for 
SNR and r = 0.88 for CNR) between non-ACS and ACS 
measurement. 

In terms of scan time differences, total scanning time for all 
sequences acquired in each body region was calculated. For 
an example, T1-weighted FSE, T2-weighted FSE, T1-weighted 
FSE Flair, and T2-weighted FSE Flair with FS were acquired in 
the brain region with and without the ACS technique, and 
the total time was calculated for all 4 sequences acquired 
with ACS and without ACS. Similarly, the total scanning time 
was calculated for all five body regions for the respective 
sequences included in this study. Figure 4 shows the total 
scanning time values for each body region. The differences 
in scanning time of ACS enabled sequences showed 
significant improvements in scanning time compared to 
non-ACS sequences. For brain, spine, liver, kidney and knee 
examination, an improvement in scan time in terms of 
percentage of 48.10%, 55.52%, 92.80%, 95.15% and 54% 
respectively was observed, which shows impressive results 
while ensuring similar image quality.  Examples of images 
acquired with ACS and without ACS technique in different 
body regions are shown in the Figures 5-9.
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Figure 1. Mean qualitative score of ACS vs. Non-ACS for all body regions read by a Radiologist. 
 
 
 

  
 

                Figure 2. SNR across all body regions for non-ACS vs. ACS.                         Figure 3. CNR across all body regions for non-ACS vs. ACS.      
 
 
 

 
 

Figure 4. Total scanning time across all sequences for different body regions with percentage difference in scanning time between non-ACS and ACS in minutes. 
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Figure 5. Brain MRI slices for all sequences of a representative subject. 
 
 

 
 

Figure 6. Spine MRI slices for all sequences of a representative subject. 
 



 22 

uINNOVATION-Global (Scientific Magazine of United Imaging Healthcare)  

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  
 

 
 

Figure 7. Liver MRI slice for all sequences of a representative subject. 
 

 
 

Figure 8. Kidney MRI slice for all sequences of a representative subject. 
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Figure 9. Knee MRI slices for all sequences of a representative subject. 

 

4. Discussion/Conclusion 

In this study, a clinical study of AI Assisted Compressed 
Sensing (ACS) magnetic resonance technology developed by 
United Imaging Healthcare was performed to measure its 
utility and effectiveness in routine clinical settings for 
different body regions (brain, spine, liver, kidney, and knee). 
Performance was measured in terms of scan duration, 
including both qualitative and quantitative parameters.  
The subjective image quality scoring parameters included 
artifacts in images, sharpness of tissue edges, overall image 
quality and the diagnostic efficiency of images and 
quantitative evaluation was done by measuring SNR and 
CNR. Often, compressed sensing methods are applied to 
different sequences, but they provide image artifacts and 
low quality of images for diagnostic purposes. In the past, 
several methods have also been introduced that help in 
image acquisition time reduction but lack in providing better 
outcomes for Radiologists to read or interpret those images 
for diagnostic accuracy. The findings of this study, on the 

other hand, revealed that the diagnostic quality of images 
acquired with ACS was similar to or better than images 
obtained without ACS.  

Scan time, SNR, and CNR are the parameters traditionally 
used to demonstrate image quality with reasonable time for 
acquisition; there is typically a trade-off among all these 
parameters. Compared to non-ACS sequences, ACS has 
much shorter scan times for all body region sequences, 
enabling ultra-fast scans. Due to discomfort, disturbances in 
consciousness, and other factors, it might be difficult for 
some patients with severe disorders to maintain still for an 
extended period during imaging studies, which causes 
artifacts and lowers image quality. This issue can be 
resolved with ACS technology, which can also enhance 
image quality and clinical precision. Additionally, in line with 
literature [7], the SNR and CNR of the ACS subgroup were 
greater than those of the non-ACS or conventional group.   

This study has some limitations. First, the data was acquired 
from a single institution and a small cohort, which may 
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influence the outcomes. A large cohort and multicentre 
study can provide stronger evidence for larger clinical 
applications. Second, the reference measurement was done 
by only one Radiologist; inter-observer and intra-observer 
variability were not evaluated. 

In conclusion, ACS technology not only substantially lowered 
scan time duration, but also provided diagnostic quality 
images without artifacts -- which enables this method to be 
clinically suitable, especially for the routine clinical settings 
where workload is high and patients may be non-
cooperative. Sequences enabled with ACS should more 
frequently be used in the clinical settings to improve image 
quality, diagnostic value, and the effectiveness of radiology 
imaging departments.   

 

5. Image/Figure Courtesy 
All images are the courtesy of Sprint Diagnostics, Jubilee 
Hills, Hyderabad, Telangana 500033, India. 
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1. Introduction 
Cardiovascular magnetic resonance (CMR) imaging is 
considered the gold standard imaging modality for the 
assessment of cardiac structure and function [1,2] and the 
primary imaging modality of myocardial tissue 
characterization. However, CMR is riddled with intrinsic 
difficulties as its implementation is complex and requires 
specialized technologist training and expertise. Varying 
levels of operator expertise introduce non-uniformity 
between scans within a center and particularly serial studies 
in a specific patient. In addition, generating accurate and 
thorough myocardial characterization results can require 
long periods of limited physical motion as well as repeated 
breath holds. Consequently, patient throughput decreases 
and scanner productivity declines. Furthermore, image data 
post-processing techniques that take advantage of the 
modality’s potential require image processing resources 
unavailable in most nonacademic institutions.   

Artificial intelligence (AI) is increasingly used in healthcare. A 
recent literature review of AI identified five main health care 
areas where AI is expected to have significant impact [3]: 
health care systems management, diagnostics, clinical 
decision-making, patient data and predictive medicine.  For 
CMR, AI will shorten and simplify workflows, preserve image 
quality, improve uniformity between scans, and enhance 

 
1 Washington University School of Medicine receives research support from United Imaging through a sponsored research agreement. Dr. Gregory Lanza is a principal 
investigator for the research. 

data interpretation for any MR center, regardless of its size 
or location. 

 

 

The aim of this review article is to outline and describe some 
of the implementations of intelligent features for CMR 
imaging using a 1.5T United Imaging MRI (uMR 570) scanner 
in collaboration with Washington University School of 
Medicine in St Louis.  The ongoing improvements strive not 
only for optimal image quality and study workflow but also 
overall for a simpler modality more accessible for the care 
of a broader patient population, for example individuals 
receiving cardiotoxic therapies for survival.  

 

2. EasyScan 

Obtaining scout scan acquisitions for CMR in the different 
orientation requires a skilled technologist. However, 
longitudinal studies for the image-guided management of 
patients are inherently subject to data inaccuracy, and 
variability exists when different technologists are involved.  
With the advent of automated or semi-automated slice 
adjustment methods, CMR studies have incorporated new 
geometric prescription processes [4-11]. For example, 
Lelieveldt et al [4,5] matched scout images to thoracic 
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anatomy models and estimated the left ventricular 
orientation for automatic view planning. The technique was 
limited to short-axis slice alignments and computational 
time was 3–5 min. While the concept was good, the 
methods were sensitive to the errors in landmarks.  

 

In practice, the optimal position of the reference planes 
differ among individuals and they do not always pass 
through predefined landmarks. 

 

Alternatively, United Imaging Healthcare implemented a 
slice alignment method (EasyScan) based on a deep learning 
regression network. Rather than relying on a few anatomical 
points, the image plane calculation utilizes all voxels in the 

region, reducing landmark detection errors and adding 
clarity to landmark annotation. The EasyScan AI planning 
algorithm2 consists of three steps: (1) cardiac region 
segmentation using the Otsu method (Ref); (2) distance map 
calculation using the trained regression network; and (3) 
plane fitting using a least-squares method.  

In our studies, EasyScan accelerated CMR imaging 13% (2.57 
min, p<0.001, 95% CI [2.31, 2.83]) versus the traditional scout 
scan approach. Moreover, in contradistinction to the four-
breath holds needed for typical plane prescriptions, EasyScan 
achieved the result with a single breath-hold scan and 
minimal operator dependence. EasyScan simplified cardiac 
image planning in all subjects and also achieved better scan 
accuracy with less plane angulation error, compared to 
previous reports for all four cardiac views (Fig. 1).  

 

 
 

Figure 1. shows the Easy scan utilizing multiple 2D transverse slices to generate the standard views in a single breath hold, which results in faster imaging and greater 
reproducibility between scans. 

 

3. AI Shim™ 
In CMR imaging, subject-induced magnetic field 
inhomogeneities can become pronounced due to 
susceptibility changes within the field of view [12]. Tissue-air 
boundaries compromise the B0 field, and careful shimming 
is required to establish a homogeneous and on-resonance 
B0 field around the heart.  

 

This is particularly true when a balanced steady state free 
precession (bSSFP) sequence is used for acquisition, which 
is sensitive to the off-resonance effect [13]. In general, a 
“frequency-scout” scan is involved in the workflow. 

 

 

EasyScan

Transverse Image Slice Orienta4on Calculated Using AI

2The EasyScan algorithm currently is not available for clinical use in the U.S. and also may not be available for such use in other countries. 
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Here, a series of images with different off-resonance 
frequencies are acquired that help the operator choose the 
best scanner frequency. Unfortunately, this process is time-
consuming and operator dependent.  

To address these issues, a generalized shimming tool using 
a mask-based AI segmentation technique (AI shimTM) 3 was 
developed [14]. AI shimTM uses a dual echo 3D gradient 
sequence with breath-hold to collect the 3D anatomical 
structure and B0 field map of the cardiac 

 

regions. A stack of transverse slices acquired at the 
beginning of the study is used to establish the shimming 
currents that automatically adjust the field for subsequent 
scans. 

Compared with typical volume shimming, AI shim increased 

signal-to-noise ratio (SNR) in images obtained for all RV and 
LV myocardium cine planes. For instance, the mean SNR of 
LV myocardium SAX cine improved 17.75% with AI shim 
(p<0.001) among healthy volunteers and 10.40% (p=0.006) 
in referred patients. Similar findings were noted for 
contrast-to-noise (CNR) measurements. The improved SNR 
and CNR obtained through AI shim afforded better 
delineation of epicardial and endocardial borders, and the 
crisper AI shim images beneficially increased the efficiency 
and accuracy of automated contour detection algorithms 
utilized by the advanced CMR analysis software.  Image 
sharpness over all four cardiac planes increased (2%) by AI 
shim and the relatively small improvement was notable 
along the thin RV free wall four-chamber and short-axis 
views (Fig. 2). 

 

 
 

Figure 2. shows a three-chamber view example that highlights the superior image quality produced independent of the technologist with AI shim as compared to volume 
shim. The histograms also show the off-resonance distributions of the whole heart in the B0 field obtained with scans from 10 volunteers using two shimming methods: 

manual volume shim vs. AI shim. Histograms were separately generated for each cardiac plane with the standard deviation within the mask region, representing an improved 
field homogeneity with automated AI shim. 

4. Fast-SENC 

Fast-SENC Cardiac MR software operates efficiently on the 
United Imaging MRI scanner enabled by accelerated spiral k-
space data acquisition. Fast-SENC technology is a rapid MRI 
scanning diagnostic feature that measures myocardium 
deformation from an unwound to a tense or contracted 
condition in one heartbeat per image plane. Breath-holds 
 
 
 

 are not required, and a complete view of the ventricle is 
acquired in 6 seconds. This specialized pulse sequence 
reflects changes in the material properties cardiac muscle 
that can be harbingers of impending decreased contractility 
(Ejection Fraction, EF) [15-17]. The Fast-SENC pulse 
sequence quantifies circumferential (GCS) and longitudinal  
 
 
 

Volume shim AI shim

3Not commercially available in the U.S. and some other countries for clinical use; sequence is still a work in progress. 
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(GLS) strain, varying with the plane of measurement, the 
latter being most utilized by cardiologists today (Fig. 3). The 

Fast-SENC has advantages of greater signal to noise ratio 
and more accurate strain calculation. 

 

 
 

Figure 3. shows CMR results in a 84 year old patient with history of transthyretin amyloidosis in the spine. Ejection fraction was noted to be 63% in 2020 and had dropped 
slightly to 56% in 2021. The LV global longitudinal strain was noted to be 10% and 9% in 2021. The mapping shown below also helps to highlight the progression of myocardial 

involvement from the anterior, septal and posterior basal walls in 2020 to include more widespread left ventricular myocardial involvement in 2021. 

 

5. Strain 
Feature Feature-tracking (FT) [18] has been described as an 
alternative means of measuring myocardial strain using 
clinically routine cine CMR images, which require no special 
sequences such as tagging with DENSE or Fast-SENC [19-21]. 
Considerable effort has been focused on increasing the 
accuracy and reproducibility of FT strain assessment, but 
the process still requires human intervention. Moreover, 
performance and reproducibility of FT is directly related to 
observer's experience.  

United Imaging Intelligence has created a deep-learning-
based fully automated myocardium strain assessment 
system4 (autoFT™, Fig. 4) that provides global and segmental 
strain estimates directly from cine CMR images without any 
human intervention, thereby removing observer variation or 
bias. The system was validated on patient data and 
compared to fast-strain-encoded (fast-SENC) imaging [22].  

 

A neural network was established and trained to classify 
and group standard DICOM MRI images into short axis 
stacks, 2-chamber, 3-chamber and 4-chamber long axis 
images for assessment of cardiac anatomy and function. No 
additional MRI images are required. A convolutional neural 
network (UNet-like NN) detects anatomical landmarks on 
images to define and segment the myocardium according to 
the American Heart Association 17-segment model. A 
motion-pyramid NN is implemented to predict the dense 
motion field between two consecutive images. The motion 
tracking network is also equipped with anatomy-awareness 
such that the dense motion field from the network can 
maintain the heart anatomy through tracking [23]. Manual 
editing of the tracking is allowed at any frame to adjust the 
estimated motion and update the strain correspondingly. 
The myocardium, defined by the segmentation mask on the 
end-diastolic frame, is densely tracked through the entire 
cardiac cycle. Pixel-wise strains are calculated from the  

 

2020. -10%

2021. -9%

4This product is a work in progress; the information in this article represents ongoing research and development. No 510k application has been filed with the FDA. This 
product is not available for sale in the U.S. for clinical uses and also may not be available for such sales in other countries. 
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dense motion field. Strain values along different directions 
(circumferential, radial and longitudinal) and at multiple 
spatial resolutions (global, segmental and pixel-wise) are 

provided in various formats, such as table, curves and 
bullseye.  

 

  
 

Figure 4. describes the workflow of the fully automated cardiac strain and function analyses. 

 

The main components of this FT method include 
segmentation and motion tracking, which leverage the 
recent progress in computer vision and deep learning to 
achieve high accuracy, robustness, and computation speed. 
Repeatable preliminary results in serial studies have been 
obtained, in part because the short acquisition times 
minimize patient motion variability.  

 

6. T1/T2 Mapping 

MRI myocardial texture characterization using native T1 and 
T2 relaxation times can provide insight into changes in  

cardiac tissue. The normal practice of quantifying early  
changes in T1 and T2 parameters compares a subsampled 
region-of-interest (ROI) from the colorized T1 and T2 
relaxation time maps with a ROI from chest wall muscle; the 
ratio of the magnetic parameter relaxation times 
determines the clinical significance. However, the technique 
is fraught with clinical variability and can be time-consuming 
to perform [24-25]. In the next edition of uINNOVATION-
GLOBAL, a novel T1/T2 mapping feature re-envisions T1 and 
T2 relaxation data (Fig. 5) maps as automatic and intuitive 
quantitative reports. 
 
 

Feature Tracking for Strain Analysis
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Figure 5. illustrates T1/T2 mapping of the cardiac myocardium. 

 

7. Conclusion 
CMR scans performed using the above-mentioned 
intelligent features are simplifying cardiac planning and 
image quality, decreasing the time for data processing and 
enhancing data interpretation. Collectively, the use of AI to 
achieve simpler and faster workflows will expand 
institutional availability, minimize technical complexity, and 
provide the best information for optimal patient care 
regardless of center location or size. 

 

8. Image/Figure Courtesy 

All images are the courtesy of Washington University School 
of Medicine in St Louis, USA. 
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Expert interview: Exploring the past, present, and future of total-body 
PET with Dr. Simon R. Cherry1

E: Dr. Cherry, thank you for joining us today to talk about 
your experience with total-body PET. Before we continue, 
we’d like to first congratulate you for winning the 2022 
Benedict Cassen Prize from the Society of Nuclear 
Medicine and Molecular Imaging (SNMMI). We especially 
enjoyed your lecture titled “A Matter of Time” which 
showcased the development of PET over the years. 

S: Thank you very much! 

 

E: You have mentioned in your lecture, as well as in many 
of your past presentations, that the idea of total-body PET 
for adult human imaging is not new and can be dated 
back to 1990 when Dr. Terry Jones proposed the concept 
using parallel large detector panels. Can you please speak 
a bit about your early involvement in total-body PET and 
why you and Dr. Ramsey Badawi decided to pursue this 
concept? 

S: That is a good question – if my memory serves me 
correctly, this all started about 18 years ago. At the time, the 
Department of Radiology at UC Davis was looking to hire 
someone well-versed in nuclear medicine physics. At the 
time I had no real connection with Radiology as my 
appointment was in the Department of Biomedical 
Engineering. However, I had known Ramsey from the time 
he was a graduate student at the University of London, and I 
was very pleased when Radiology recruited him to UC Davis. 

Naturally, Ramsey and I quickly began chatting about 
research projects that we could collaborate on. Ramsey had 
done a lot of simulation work on longer axial field of view 
(FOV) PET systems up to 60 cm and studied effects such as 
random and scatter coincidences because the general 
consensus at the time was that the longer axial FOV PET 
systems would be dominated with these types of 
coincidence events, and therefore the idea would not be 
worth pursuing. 

 

 

 

Ramsey’s simulations on longer axial FOV PET systems 
showed that the effects of scatter and random coincidences 
did not grow as quickly as one might expect. Given Ramsey’s 
interests in this phenomenon and my experience in 
preclinical instrumentation which already had relatively 
large axial FOV capable of covering an entire mouse, the 
conversation quite naturally turned to building longer axial 
FOV PET systems for human imaging. 

I recall having the conversation about how long the system 
should be. At the time, the state-of-the-art clinical PET 
system was about 20 cm long. I am not sure who said it first, 
but we decided if we were going to build a long axial FOV 
PET system, we should take it to the extreme because 
otherwise you would always be left wondering what would 
happen if you built a longer system. The ability to capture 
the entire human body and watch the radiotracer move 
across the human body with improved sensitivity struck us 
as an exciting challenge that had never been attempted 
before. I think both Ramsey and I like big ideas and we are 
not afraid to take on those challenges. Shortly after, the 
total-body PET idea was born. 

Looking back now I think we had no idea what the journey 
was going to be like. I would not have predicted that it 
would have taken so long. At the same time, I do not think I 
would have predicted that it would have been so successful 
either. So far, I have been very happy with what has 
transpired. 

 

E: As many people know, the EXPLORER total-body PET 
system (now known as the uEXPLORER® system) was born 
out of a collaboration with United Imaging Healthcare. 
Can you please talk a bit about why you and Dr. Badawi 
decided to collaborate with a medical imaging device 
manufacturer? What are some advantages you saw with 
such collaborations compared to developing the system 
entirely in-house at UC Davis? 

 

 

 
1The University of California, Davis (UC Davis) receives financial support from United Imaging Healthcare through a sponsored research agreement, in which Dr. Cherry is 
a principal investigator, and has a revenue-sharing license agreement with the company for jointly developed technology.  
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S: After we were awarded the $15.5 M transformative R01 
grant from the National Institutes of Health in 2015, we 
quickly recognized that even though we had the funding, 
from the academic side we had little expertise or experience 
in building a PET system on an industrial scale. At the same 
time, we also realized we were going to receive a lot of 
attention due to the amount of funding we were awarded 
for this project. As many have experienced, academic 
projects can sometimes take longer than expected; and 
while the prototypes can produce images, they may not be 
stable or robust enough for routine clinical use. Therefore, 
we wanted to use the funding in a way that would lead to a 
lasting change in the field. 

From the beginning, we were aware of the massive 
responsibility and that it was essential to collaborate with an 
industry partner. In fact, we have discussed the total-body 
PET idea with multiple companies even before we received 
the award. However, the response from industry at the time 
was generally lukewarm as they did not see a clear market 
need and were heavily invested in PET/MR technology at 
that time. 

With that said, our first exposure to United Imaging 
Healthcare was at the IEEE Medical Imaging Conference in 
late 2015 where we met Dr. Hongdi Li (CTO of United 
Imaging Healthcare). I remember sitting down with him, and 
Hongdi was rapidly sketching ideas on the back of a napkin. 
He already had ideas about how to build a total-body PET 
scanner with United Imaging Healthcare technology and he 
offered to come to UC Davis to give a detailed presentation 
on how United Imaging Healthcare could help with the 
project within a couple of weeks, which he did. While we 
were impressed with his proposal, we did not know much 
about the company other than Hongdi. He then invited us 
to visit the United Imaging Healthcare headquarters in 
Shanghai several weeks later in January 2016. That was the 
pivotal point for us; in only 8 hours our perception of the 
company completely transformed despite its relatively 
young age. Although we had our doubts before visiting, 
after we toured the facilities and met the people we knew 
that we would move forward with United Imaging 
Healthcare, because we had found a team with the same 
mindset we had. I remember well that at the end of our visit, 
Min Xue, President of United Imaging Healthcare said “if you 
want to do this project with us, we will do it and we will do it 
well,” and with those words and a handshake, the 

partnership was born. Total-body PET was an ambitious and 
difficult project, but it was worth doing. It was high risk, but 
United Imaging Healthcare leadership was willing to take 
the risk. They trusted and believed in us, and we trusted and 
believed in them, and it has worked out extremely well. 

 

E: The term “total-body PET” has seen increased usage in 
the literature since the EXPLORER project was funded in 
2015. Can you please talk about why you used the term 
“total-body PET” instead of the more common “whole-
body” PET? What are the differences between the two? 

S: The term “whole-body PET” has been in widespread use 
for a long time, and it typically refers to an eyes-to-thighs 
scan performed by stepping the patient through a 
conventional PET system in multiple bed positions. We 
needed a distinct terminology to denote the fact that we are 
not moving the bed and we are capturing the entire human 
body at once, and hence we created the term “total-body 
PET” to distinguish itself from “whole-body PET.” The key 
distinction here is that “total-body PET” allows us to capture 
the kinetics across all tissues in the body by imaging the 
entire human simultaneously without moving the bed. 
Capturing kinetics across the entire human is very difficult 
and inefficient to achieve with “whole-body PET,” especially 
when imaging radiotracers with faster kinetics. 

 

E: Prior to the installation of the uEXPLORER system at UC 
Davis, you mentioned that total-body PET provides 
improved tradeoffs between scan time, radiation dose, 
and image quality. Having been the users of the first 
clinical total-body PET system in the world since 2019, 
what are some additional advantages of total-body PET 
that you and Dr. Badawi have realized? 

S: Given the extensive amount of simulations we have 
previously performed, we had very high expectations for 
total-body PET and were not surprised by the image quality 
improvement achieved with the higher system sensitivity. 
However, after seeing the first images, we were amazed by 
the clarity and sharpness which were achieved with both 
high sensitivity and fine spatial resolution without the need 
to apply smoothing filters. In addition to the first dynamic 
total-body PET movie showing the radiotracer moving 
across the entire body, the ability to perform dynamic PET 
imaging of the entire body using 0.1 s time frames (which 
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has never been done before) and visualizing the cardiac 
cycle via PET was mind-blowing and eye opening. 

 

E: What are some of the latest research projects you and 
Dr. Badawi are working on that were made possible using 
the uEXPLORER system? 

S: One of the projects that we are involved in is the total-
body imaging of CD8+ T cells for COVID-19 using 89Zr-Df-
Crefmirlimab-Berdoxam. This radiotracer has been used in 
cancer patients for immunotherapy, and the resulting 
radiation dose given to the patients, while justifiable, can be 
quite high. To use the same radiotracer to assess COVID-19 
in recovering patients as well as in control groups (i.e., 
healthy volunteers), it is essential to utilize a PET system 
that can minimize the radiation dose administered to the 
patient. 

To the best of my knowledge, we are currently the only 
people that have 89Zr-radiolabled human imaging data with 
a control baseline from healthy human volunteers. This is 
because total-body PET is a necessity for imaging 89Zr at 
greatly reduced injected radioactivity levels. The imaging of 
89Zr-radiolabled control groups would not have been 
possible without total-body PET systems. Also, with regards 
to the immune system, there are many chronic diseases 
where there may be value in scanning multiple time points 
(at 20 y/o, 30 y/o, 40 y/o, etc.) and performing interventional 
studies (e.g., before and after vaccination). These are new 
considerations that would not have previously been feasible 
without the large dose reduction enabled by total-body PET. 

As always, we want to develop better and better next-
generation PET systems to enable more novel clinical and 
research imaging applications. I hope this is just the 
beginning for these kinds of high-end PET systems, and I 
hope the field continues to push towards developing better 
systems in the future because we still have some ways to go. 

 

E: When it comes to PET scanner performance, often the 
most discussed performance parameters are 1) 
sensitivity, 2) spatial resolution, 3) count rate 
performance, and 4) time of flight (TOF) performance. 
How would you rank the importance of each of these 
parameters to ensure the future success of total-body 
PET? 

S: This is a difficult question – there needs to be a balance 
to a certain extent, because otherwise the PET system 
would be limited by its weakest link. Care must be taken to 
not overemphasize one performance metric over the other. 
There is no point in having spatial resolution if there are 
insufficient counts to support the spatial resolution, for 
example. The other way around is also sub-optimal – if 
there are tons of counts but the detectors have coarser 
spatial resolution, the annihilation photons are not being 
fully utilized. If there is excessive deadtime, there can be a 
problem with count rate performance. So, these metrics are 
all linked to each other. 

Therefore, I am going to answer the question a bit 
differently and ask “Where would I put my efforts in going 
beyond the current total-body PET systems? Where can we 
improve further?” Obviously, TOF performance is an area 
where we can do better, and so I think in the next few years 
it is not unreasonable for current PET detector technology 
to reach 100 – 150 ps TOF resolution. Challenging for sure – 
but I am confident that there is a way to get there. Of 
course, we would like to go down to well below 100 ps, but 
that is going to require some technological advancements 
which will take a bit longer.  

I think another area to emphasize is “How do we deal with 
Compton scattering within the detector?” When comparing 
the measured sensitivity of a detector versus the predicted 
sensitivity based on the stopping power and thickness of 
the scintillator, the measured sensitivity is often much 
lower. The reason is that a lot of those Compton scattered 
photons are rejected since they are captured outside the 
photopeak energy window, and the detector efficiency is 
much lower as a result. We need to have detectors that are 
thick enough so that all of the energy gets absorbed; 
however at the same time there needs to be a way to 
determine the energy and the location of each interaction to 
best determine the first interaction among multiple 
interactions. So, I think this is another area to improve – 
perhaps one that is not mentioned very much because it is 
a little bit more of a subtle effect. 

One thing of note is that we are not going to be able to 
make much more improvements in geometric coverage. The 
uEXPLORER system is the epitome of ultra-high geometric 
efficiency, so little sensitivity improvement can be gained 
from extending the system beyond 2 m. 

Finally, I think we need to continue searching for new 
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scintillator materials. If we can get materials with better 
photoelectric cross sections, then we can get fewer events 
where inter-crystal scattering occurs. While BGO is better 
than LYSO in terms of photoelectric cross section, we do not 
yet have a robust way to obtain timing resolution down to 
below 100 ps. However, there are other materials that are in 
the early stages of development that have very good 
photoelectric cross sections and can be very fast, so we 
need to see effort and funding going into these materials. It 
took a good decade of development for LSO and LYSO to 
get to a point where it is usable for a PET system, and it will 
likely take a similar number of years for some of these new 
materials. 

 

E: One of the advantages of PET systems with increasing 
axial FOV is the increasing axial coverage with uniform 
sensitivity. With the uEXPLORER system the axial length 
with uniform sensitivity is about 1 m. Can you speak a bit 
about the advantage of having uniform sensitivity axially? 
Are there any advantages to further extending the PET 
axial FOV beyond 2 m so that the axial length with 
uniform sensitivity covers the entire adult human? 

S: Good question – of course, there is a lot of debate about 
the optimal axial length of a total-body PET system. 
Proponents for the shorter axial length total-body PET 
systems suggest that only the major vital organs (e.g., from 
the brain to the pelvis) must be covered and not the lower 
limbs. If that is the goal, then a system that is slightly over 1 
m should suffice for most adult humans. However, to have 
ultra-high and uniform sensitivity across that entire 1 m 
region, the system needs to be considerably longer than 1 
m due to its geometric response. Otherwise, the sensitivity 
at the first few cm of either end of the system (where the 
brain and pelvic regions are located at) is no better than 
that of a conventional PET system. So, I think a total-body 
PET system needs to be least 1.4 – 1.5 m to have ultra-high 
and uniform sensitivity across all the major organs of the 
body. 

Of course, it is a bit more complicated than that – as you 
accept more oblique lines of response, then those lines get 
more heavily attenuated. This leads to more scattered 
photons because they travel a much longer path length 
through the body. So, while for point sources one can 
continue to benefit from sensitivity gains as the axial length 
increases, the gain is not as dramatic when imaging adult 

humans. So, while the minimum length required I would 
suggest is 1.4 – 1.5 m, the optimal length beyond that 
depends on the intended application, because there are 
applications where there is a need to image beyond the 1 m 
“high sensitivity” region. Some examples of our own 
research projects requiring high sensitivity information 
outside the 1 m region include the assessment of 
rheumatoid arthritis where there is a need to survey all the 
joints in the body simultaneously, and where disease is 
present in the wrists, ankles, and the feet as well. So, if the 
goal is to survey all of that, and knowing the radiotracer 
uptake is not very high in these small structures, having a 
system with ultra-high sensitivity is essential. In such 
scenarios, a 2 m system will really help. 

Another example is our T cell study in COVID-19 subjects. As 
many people know, one of the production sites of T cells is 
the bone marrow. There is lots of bone marrow in the long 
bones of the leg, and we have seen quite some differences 
in radiotracer uptake between human subjects in our 
studies. This is another case where there is a need to extend 
the axial coverage beyond the pelvis and into the legs while 
minimizing the radiation dose given to the human subjects 
by taking advantage of the ultra-high sensitivity of total-
body PET. 

So, if I want to have a high-end PET system that is also a 
high-end research instrument to support all types of 
research related to systems medicine, the human 
connectome, and the immune system, then I want to have a 
scanner that can see the entire body with ultra-high 
sensitivity, and that pushes me much closer to having a 2 m 
system. The optimal length may very well turn out to be a 
different number if the intended application of the PET 
system is only for routine clinical use, such as FDG clinical 
oncology. On the other hand, if the goal is to develop new 
clinical indications by understanding the processes and 
treatment effects using systems such as the uEXPLORER, I 
think we want the best instrument we can get. 

It is a long answer – it is not a question that has a single 
correct answer, but I am very glad we are able to get the 
uEXPLORER system built to the length that it is because it 
shows us what is possible and allows us to do things that we 
could not do otherwise. 
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E: The current NEMA NU 2-2018 standard for evaluating 
the performance of clinical PET systems using phantoms 
with lengths of 70 cm or less is not designed to evaluate 
PET systems with axial FOV greater than 65 cm. As a 
result, longer phantoms have been used at UC Davis to 
better reflect the actual performance of total-body PET 
systems when imaging adult humans. Do you think that 
the next NEMA NU 2 standard should include tests 
appropriate for evaluating total-body PET systems? Is 
there a need to revise the standard so that the tests are 
suitable for clinical PET systems of all lengths? 

S: I think the next NEMA NU 2 standard needs to account for 
total-body PET systems since the current measurements do 
not fully reflect the real-world performance of these 
systems. Although one of the approaches to address this 
concern is to image longer phantoms, the process is not a 
simple undertaking – long phantoms can be heavy and 
difficult to fill, which is a resource intensive process. 

Therefore, the challenge for the NEMA committee and for 
those who are trying to contribute is “How do we come up 
with a meaningful set of measurement that is also practical 
to do?” I do not think there is an easy answer for that 
currently, but certainly the standard needs to be revised to 
account for the new class of systems so one can fairly 
assess their performance in comparison to shorter systems. 
Ideally, rather than developing a new NEMA standard for 
long axial FOV systems, there would be an integrated 
standard that works for any length of scanner. It will be 
interesting to see where that discussion goes and what 
ideas people come up with. 

The other thing that is not properly captured with the 
current NEMA measurement is the impact of different TOF 
performance on the resulting reconstructed images, and 
that also needs to be considered in the new NEMA standard 
now that we have scanners with considerably better TOF. 
One could assume that TOF is going to get better and better 
in the coming generations of scanners, so we need to be 
ready for that. 

 

E: Where are we going with total-body PET in the next 5 to 
10 years? How can a medical device manufacturer help 
facilitate this process with academic researchers from 
both a scientific and logistical standpoint? 

S: People may disagree with me on this – I think that it is not 

so challenging to operate total-body PET systems in the 
current clinical environment. At the same time, I feel that we 
are not using PET in the most quantitative way possible in 
the clinic – we are still largely using semi-quantitative 
metrics such as SUVmax! Therefore, my hope for the 
manufacturers is that they will recognize the opportunities 
and potential for PET to be an accurate measurement 
device for biomedical research, which means that the 
system must be precise and accurate over a massive 
dynamic range. Of course, while it is essential to achieve 
accurate quantification, it is not a trivial task. 

Tomorrow’s research will lead to future clinical applications. 
Once we can prove that we can accurately measure small 
changes in the human body, then perhaps later the semi-
quantitative metrics can eventually be utilized in the clinic. If 
we consider the history of 2-Deoxy-D-glucose research, 
which began as a quantitative research tool in animals and 
certainly long before anyone considered its clinical role – I 
think we are going to need to do the same kind of deep 
investigation on new radiotracers to better quantify them 
and unveil their potential for future clinical applications. 
Total-body PET is going to be the measurement tool that I 
believe we are going to need; however, we must view it also 
as a scientific instrument, not simply a producer of pretty 
pictures. Too many people are only talking about its clinical 
role – about “Let’s make it a little bit cheaper” or “Let’s get 
the dose down” or “Let’s make it a bit quicker.” That is not 
changing the field, and we will never change the world that 
way. 

 

E: Finally, what do you think the ultimate PET scanner 
would look like and when will it be developed? 

S: As I have mentioned in the Cassen Lecture at the 2022 
SNMMI meeting, I think the ultimate scanner will not require 
image reconstruction once the TOF resolution reaches 20 – 
30 ps. This will create new possibilities for all kinds of novel 
system geometries and correspondingly detector usage 
because we will not be restricted by the traditional radial 
and angular sampling framework anymore. The systems 
may also be more patient friendly as well. 

While we are on our way to developing the ultimate 
scanner, there are still a few things we need to first solve. 
One of the problems that stands out to me is motion. Even 
if we can make our scanner extremely quantitatively 
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accurate and get the best quality information possible from 
our data, the data is no good if the patient moves and we do 
not know where the motion comes from. Therefore, we 
need to find a robust way to measure and correct for 
motion of all types. I think motion correction is one of the 
greatest methodological challenges that will also take a long 
time to solve, but ultimately, I think motion artifacts can be 
drastically reduced. Thus, while developing the next 
generation of PET scanners, the software piece is critical as 
well. 

As we approach the limit where every count is carrying the 
maximum information possible, if we keep the detector 

efficiency high and detect as many photons as possible, we 
will be close to doing as well as we can. The technology that 
will enable us to do this is not available yet – there are 
several ideas for how to get there, and I think the answer to 
“When will we get there?” is: 

“It’s just a matter of time.”  

 

E: With that, Dr. Cherry, thank you very much again for 
your time and I hope you enjoyed exploring the past, 
present, and future of total-body PET with us! 

S: My pleasure. 
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Abstract 

HYPER Iterative (Regularized OSEM), uAI® HYPER DLR (Deep 
Learning Reconstruction), and uAI® HYPER DPR (Deep 
Progressive Reconstruction) are advanced PET image 
reconstruction algorithms that have recently been 
introduced into clinical practice in Japan. We systematically 
determined the performance of these algorithms by 
measuring various indices of image quality and quantitative 
accuracy according to the Japanese Society of Nuclear 
Medicine (JSNM) guidelines derived from images acquired 
using a uMI® 550 PET/CT system (United Imaging 
Healthcare, Shanghai, China). The image quality index (QH,10 

mm/N10 mm) obtained using HYPER Iterative, DLR and DPR 
satisfied the JSNM criterion of ≥ 2.5. The QH,10 mm/N10 mm 
value for HYPER DPR with Enhance2 containing non-local 
mean and Metz filters as a postfiltering option was 11.5, 
which was the best among the evaluated reconstruction 
methods. Sphere detectability, on the other hand, was 
better with HYPER DPR than with the other reconstruction 
methods assessed. Quantitation of 10 mm spheres was 
improved with HYPER Iterative, DLR and DPR compared to 
OSEM. Overall, our results showed that the advanced image 
reconstruction algorithms can improve image quality and 
quantitative accuracy (particularly in 10 mm spheres), 
compared with OSEM-based reconstruction methods which 
may improve detectability of smaller lesions. HYPER DPR 
reduced noise, improved image contrast, and enhanced PET 
image quantitation.  

 

 

1. Background 

Positron emission tomography/computed tomography 
(PET/CT) using 18F-fluoro-2-deoxy-D-glucose (FDG) has 
become an essential tool for diagnosing and staging cancer. 
Furthermore, PET/CT imaging is becoming more important 
as a means of providing quantitative biomarkers for 
monitoring therapeutic responses and evaluating new drug 
therapies. However, PET image quality and quantitative 
accuracy can be sensitive to various factors such as imaging 
protocols, PET scanner specifications, reconstruction 
methods and parameters [1]. The Japanese Society of 
Nuclear Medicine (JSNM) has published standard PET 
imaging protocols together with phantom test procedures 
and criteria for oncological PET imaging using FDG. The 
executive summary is available on the JSNM website 
(http://jsnm.org/archives/3071/). The JSNM standards for 
image quality and quantitative accuracy are regularly 
updated to account for advancements in hardware and 
software performance of PET scanners to ensure 
harmonization of various scanner models, which can 
improve the robustness of multicenter studies. 

The JSNM has recently published new standards for 
oncological FDG PET studies based on phantom data 
obtained from 23 PET/CT scanners primarily reconstructed 
using ordered subset expectation maximization (OSEM)-
based reconstruction methods [2]. However, the image 
reconstruction results using the latest clinically available 
advanced image reconstruction algorithms – including  

 

 
1Kenta Miwa and Tensho Yamao received financial funding through a sponsored research agreement between Fukushima Medical University and United Imaging Healthcare 
Japan. 
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HYPER Iterative (Regularized OSEM), and deep-learning (DL)-
based methods such as uAI® HYPER DLR (Deep Learning 
Reconstruction) and uAI® HYPER DPR (Deep Progressive 
Reconstruction) were not included. Therefore, we 
systematically performed qualitative and quantitative 
evaluations of PET image reconstructions using these 
algorithms according to the JSNM phantom test guidelines. 

 

2. Materials and Methods 

2.1 PET/CT scanner 

All PET data were acquired using a uMI® 550 PET/CT system 
(United Imaging Healthcare, Shanghai, China). The system is 
comprised of a PET scanner coupled to an 80-slice CT 
scanner. One detector block of the PET scanner is 
comprised of a 7 × 6 LYSO array of 2.76 × 2.76 × 16.3 mm3 
crystals coupled to silicon photomultiplier (SiPM) sensors. 
The uMI 550 has axial and transaxial fields of view (FOV) of 
24 and 70 cm, respectively. The time-of-flight (TOF) timing 
resolution is 395 ps. The spatial resolution and sensitivity of 
the uMI 550 according to National Electrical Manufacturers 
Association (NEMA) NU 2-2018 standard are 2.95 mm/2.97 
mm (transverse/axial) at 10 mm off center and 10.3 
cps/kBq, respectively [3]. 
 
2.2 Phantom experiments 

Phantom data were acquired according to the JSNM 
phantom test procedures [4]. We used a NEMA body 
phantom comprising six spheres with diameters of 10, 13, 
17, 22, 28, and 37 mm. The sphere-to-background activity 
ratio (SBR) in the phantom was 4:1 with a background 
activity concentration of 2.53 kBq/mL. 
 
2.3 Data acquisition and image reconstruction 

We acquired PET images in three-dimensional list mode for 
30 min and reconstructed them using OSEM + point spread 
function (PSF) + time-of-flight (TOF) (3 iterations; 20 subsets; 
postfilter, non-local mean and Gaussian filter 6 mm), HYPER 
Iterative (β values of 0.01, 0.07, 0.14, 0.21, 0.28, 0.35, 0.42, 
0.49, 0.56, 0.63, 0.7, 0.77, 0.84, 0.91, and 0.98; PSF+TOF, on), 
HYPER DLR (2 iterations; 20 subsets; postfilter, combined 
non-local means, Gaussian and Metz filters, 4 mm; PSF+TOF, 
on), and HYPER DPR (smoothing strength, 1–5 (Smooth to 
Sharp); postfilter; combined non-local means; Gaussians 

and Metz filters, 4 mm; PSF+TOF, on). The reconstruction 
parameters for each algorithm were chosen to account for 
differences in convergence speeds to ensure that the 
algorithms were compared under optimal conditions, 
similar to our previous studies. The parameters for OSEM 
were derived from the existing clinical protocol at Fujita 
Health University Hospital; the parameters for HYPER DLR 
were based on the work performed by Xing et al. [5]; and 
the same Gaussian filter was used for both HYPER DLR and 
HYPER DPR for direct comparisons. Images were 
reconstructed in a 256 × 256 matrix, with a slice thickness of 
2.68 mm. Data acquired in 30 min list mode were re-binned 
into acquisition durations of 2 and 10 min. All standard data 
corrections were applied. 
 
2.4 Image analyses 

We assessed image quality by evaluating the contrast of the 
10 mm hot sphere and background variability on PET 
images acquired for 2 min using PMOD software version 
3.8. A circular ROI was placed on the 10 mm sphere on an 
axial slice of the sphere center. We also placed twelve 10 
mm diameter circular ROIs on the background on a slice of 
the sphere center and on slices ± 1 cm and ± 2 cm away 
from the center slice (60 ROIs total). The percent contrast (% 
contrast) for the 10 mm hot sphere (QH,10 mm) was calculated 
as: 

𝑄),+,	-- 	= 	

𝐶),+,	--
𝐶.,+,	--B 	− 1

𝑎) 𝑎.D 	− 1
	× 	100	(%),									 

where CH,10 mm and CB,10 mm are the average activity 
concentration in the ROI for the 10 mm sphere and in the 
background 10 mm diameter ROIs, respectively, and aH∕aB 
is the known activity concentration ratio between the hot 
spheres and the background. The percent background 
variability (N10 mm) for the 10 mm circular ROIs was 
calculated as:  

	𝑁+,	-- 	= 	
/0!"	$$
1%,!"	$$

	× 	100	(%),	and 

𝑆𝐷+,	-- 	= 	J
∑ L𝐶.,+,	--,2 	−	𝐶.,+,	--M

34
25+

𝐾	 − 1 ,𝐾 = 60, 

where SD10 mm is the standard deviation of the mean activity 
concentration for the 60 background ROIs.  
We assessed the quantitative accuracy of the data by 
measuring the mean standardized uptake value (SUVmean), 
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the relative recovery coefficient (RC) for the hot spheres, 
and the average SUV in the background (SUVB,ave) on PET 
images acquired for 10 min. 

 

3. Results 

Figure 1 shows the % contrast, background variability, and 
image quality index (QH,10 mm/ N10 mm) as a function of the β 
value in PET images reconstructed using HYPER Iterative. 

The % contrast increased as the β value decreased. The % 
contrast was higher than that of OSEM + PSF + TOF at 
ranges of β = 0.01–0.70. Background variability decreased as 
the β value increased and was lower than that in OSEM + 
PSF + TOF when β = 0.63–0.98. The image quality index 
(QH,10 mm/N10 mm) from HYPER Iterative satisfied the JSNM 
criterion of ≥ 2.5. The QH,10 mm/N10 mm value reached 
maximum at β = 0.63, then decreased as a function of 
increasing β values. 

 

 

Figure 1. Percent contrast (QH,10 mm), background variability (N10 mm), and image quality index (QH,10 mm/ N10 mm) as a function of β in PET images reconstructed using HYPER 
Iterative. The dotted line represents the reference standards for the JSNM image quality acceptance. OSEM represents OSEM + PSF + TOF. 

 

Figure 2 shows the % contrast, background variability, and 
image quality index (QH,10 mm/N10 mm) with various postfilter 
options in PET images reconstructed using HYPER DLR. 
The % contrast in DLR was lower than that in OSEM + PSF + 
TOF without a postfilter. On the other hand, % contrast in 
DLR was almost identical to that in OSEM + PSF + TOF with a 
postfilter containing a non-local mean filter. The 
background variability was lower in DLR than in OSEM + PSF 

+ TOF. Regardless, the image quality index (QH,10 mm/N10 mm) 
in DLR satisfied the JSNM criterion for all configurations. The 
QH,10 mm/N10 mm values for DLR with Smooth1, Smooth3, and 
Enhance2 containing the non-local mean filter were higher 
than those of OSEM + PSF + TOF. The QH,10 mm/N10 mm value 
for DLR with Enhance2 was maximal among all 
configurations. 
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Figure 2. Percent contrast, background variability, and quality index (QH,10 mm/N10 mm) of PET images reconstructed using HYPER DLR with various postfilter options. The dotted 
line represents the reference standards for the JSNM image quality acceptance. OSEM represents OSEM + PSF + TOF; none represents no postfilter. 

 

Figure 3 shows the % contrast, background variability, and 
image quality index (QH,10 mm/N10 mm) with different 
smoothing strength and postfilter options in PET images 
reconstructed using HYPER DPR. The % contrast and 
background variability in DPR increased with increasing 
smoothing strength. The % contrast and background 
variability tended to be lower in DPR with Smooth2 and 
Smooth3 with a Gaussian filter, than in other postfilter 

options. The image quality index (QH,10 mm/N10 mm) in DPR 
satisfied the JSNM criterion. The QH,10 mm/N10 mm values for 
DPR under all conditions were better than those for OSEM + 
PSF + TOF. The QH,10 mm/N10 mm values for DPR with Smooth1, 
Smooth3, and Enhance2 with a non-local mean filter were 
substantially better than those with other postfilter options. 
The QH,10 mm/N10 mm value for DPR with Enhance2 was 
maximal among all configurations. 
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Figure 3. Percent contrast, background variability, and image quality index (QH,10 mm/N10 mm) with different smoothing strength and postfilter options in DPR PET images. The 
dotted line represents the reference standards for the JSNM image quality acceptance. None represents no postfilter; OSEM represents OSEM + PSF + TOF; Str represents 

smoothing strength. 

 

Figure 4 shows the relationship between % contrast and 
background variability for all reconstructed algorithms. 
The % contrast was plotted as a function of the background 
variability of hot spheres with diameters of 10 mm. Thus, a 
choice was needed between increased % contrast and 

decreased background variability. Ideally, these points on 
the graph would lie in the top left of the figure [6,7]. The 
balance between contrast and image noise was better in 
this descending order: HYPER DPR, HYPER Iterative, HYPER 
DLR, and OSEM. 
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Figure 4. Relationship between % contrast and background variability for all reconstructed algorithms evaluated. OSEM represents OSEM + PSF + TOF. 

 

Figure 5 shows PET images acquired for 2 min and 
reconstructed using various methods. Statistical noise in 
PET images was more apparent when OSEM + PSF + TOF

was applied, but lower with HYPER DPR. Sphere detectability 
on PET images was visually better for HYPER DPR than the 
other types of algorithms evaluated. 

 

 
 

Figure 5. Examples of PET images reconstructed with OSEM +PSF +TOF (3 iterations; 20 subsets), HYPER Iterative (β = 0.63), HYPER DLR (Enhance2), and HYPER DPR 
(Strength1_Enhance2) acquired for the routine clinical duration of 2 min. The SBR was 4. All images are displayed as SUV on a scale of 0–4. 
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Figure 6 shows the SUVmean and RC of hot spheres on 
images acquired for 10 min and reconstructed using OSEM 
(3 iterations; 20 subsets), HYPER Iterative (β = 0.63), DLR 
(Enhance2), and DPR (Strength1_Enhance2). The SUVmean 
and RC differed considerably depending on the 
reconstruction method. Quantitation of 10 mm spheres was 
improved by HYPER Iterative, DLR and DPR. The tendency of 

sphere size dependence was similar among OSEM, HYPER 
DLR and HYPER DPR except for HYPER Iterative. The SUVB,ave 
of all reconstructions was within 0.95–1.05 (OSEM, 1.02; 
HYPER Iterative, 1.02–1.03; HYPER DLR, 1.02–1.03; HYPER 
DPR, 1.02–1.03). These results indicated that the scanner 
and reconstruction methods were appropriately calibrated, 
with quantitative accuracy within ± 5% error. 

 

 

 
 

Figure 6. Results of SUVmean and relative recovery coefficient of SUVmean of hot spheres on images reconstructed with OSEM +PSF +TOF (3 iterations; 20 subsets), HYPER 
Iterative (β value, 0.63), HYPER DLR (Enhance2), and HYPER DPR (Strength1_Enhance2). 

 

4. Conclusions 
Our phantom results showed that the advanced image 
reconstruction algorithms can improve image quality and 
quantitative accuracy compared with traditional OSEM-
based methods. In our evaluations, HYPER DPR reduced 
noise, improved image contrast, and enhanced PET image 
quantitation in 10 mm spheres, which may help improve 
detectability of smaller lesions. However, image quality and 
quantitation substantially differed according to the 
reconstruction parameters. The parameters of the new 
reconstruction methods may require optimization tailored 

to each institution and scanner, which will also be our next 
step. Further assessment using human data is needed to 
evaluate the performance of these advanced image 
reconstruction algorithms in various imaging scenarios. 

 

5. Image/Figure Courtesy 
All images are the courtesy of School of Health Sciences, 
Fukushima Medical University, Japan. 
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1. Introduction  

Ischemic cardiovascular disease has evolved to become the 
leading cause of morbidity. Despite effective treatments like 
statins and other preventive efforts, it has led to the loss of 
useful life years and global mortality. Cardiovascular disease 
is no longer confined to the developed world; it is also a 

problem for developing nations. Despite receiving the best 
possible care from modern interventional and pharmacologic 
therapies, 10% of acute coronary syndrome patients 
experience recurrent episodes during the first year (1). 

 

 
 

Figure 1. Curved and 3D reconstructions in a 32-year-old man who is a smoker with dyslipidaemia and comes with acute onset chest pain and a normal ECG, reveals a normal 
coronary arterial tree ruling out an acute coronary event. Scanning was performed on a uCT® 780 (United Imaging Healthcare, Shanghai, China) 160 slice CT scanner.

The CT Coronary Angiogram (CTCA) is the most advanced 
diagnostic armamentarium of tests for detecting and 
monitoring coronary artery disease. Patients with stable 
and unstable anginal symptoms benefit greatly from CTCA, 

which has a 99% sensitivity and 97% negative predictive 
value (2) for severe coronary artery disease (CAD) detection, 
shown in Figure 1. 
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The National Institute for Health and Care Excellence (NICE) 
provides independent evidence-based guidance for 
England's National Health Service. Its 2016 updated 
guideline for the assessment and diagnosis of recent onset 
chest pain or discomfort of suspected cardiac origin 
 

recommends CCTA as the first-line investigation for all 
patients with angina (or non-anginal pain but an abnormal 
electrocardiogram) and no prior CAD, with second-line 
functional imaging if the CCTA is equivocal (3) as shown in 
the Figure 2. 

 
 

Figure 2. A 63-year-old man with an aortic valve replacement done 10 years ago and no prior coronary artery disease comes with recent onset chest pain. The 
Echocardiogram showed a normal left ventricular function but a dilated ascending aorta. The ECG showed no new changes. CTCA reveals no stenosis in the left circumflex 

(LCx) artery and right coronary artery (RCA) (panels B and F). However, left anterior descending (LAD) shows a 90% ostial as well as two short more than 90% stenosis in the 
distal segments marked by arrows (panels C and CC). The venous phase run through the chest and abdomen after the CTCA with no additional intravenous contrast shows a 
dilated ascending aorta with no dissection, dilatation or stenosis in the rest of the aorta (Panels D and E). The patient was scanned on a uCT 780 (United Imaging Healthcare, 

Shanghai, China) 160 slice cardiac CT scanner. 

 

The SCOT-Heart Investigators trial was an open-label, 
multicenter, parallel-group trial that followed 4146 patients 
with stable chest pain for 3 to 7 years. The study showed 
that adding CCTA to standard care in patients with stable 

chest pain resulted in a significantly reduced rate of CAD or 
nonfatal MI at five years than standard care alone, without 
increasing the rate of coronary angiography or coronary 
revascularization (4) (Figure 3). 
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Figure 3. Panels A, B and C show CTCA in a 40-year-old lady with palpitations and chest pain. She was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 160 
slice cardiac CT scanner. ECG and Echocardiogram were normal. Despite a high heart rate of 140 beats/minute, the image quality we obtain was excellent. A mild to moderate 

stenosis was seen by calcified plaques in proximal LAD and LCx. She was managed medically. Panels D, E, F and G show a normal CTCA in a 49-year-old woman without any 
risk factors for coronary artery disease but with recurrent chest pain and an abnormal ECG with a borderline positive treadmill test. Chest pain from cardiac cause was ruled 

out. 

 

2. Recent improvements in CTCA 
hardware and software 

The clinical value of CTCA has continued to increase 
because of considerable developments in CT technology, 
software, and machine learning in recent years. Increasing 
gantry rotational rates enables imaging that was not 
achievable with older machine models. Iterative 
reconstruction techniques with improved temporal 
resolution for patients with high heart rate have been 

utilized to drastically lower the radiation dose to the patient 
without affecting the image quality. High, near-isotropic 
spatial resolution is also required for coronary artery 
imaging. The accuracy of CTCA is improved by using the 
advanced detector features a thin 0.5 mm element size that 
can fundamentally improve the spatial resolution. And the 
detector has a coverage of 4–16 cm in z direction which 
enables simultaneously acquiring imaging date of the entire 
heart in a single breath-hold. Such developments are 
underway and will undoubtedly increase the use of CTCA. 
(5) (Figure 4) 
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Figure 4. The LAD stent imaged in a higher version machine, the uCT 780 (United Imaging Healthcare, Shanghai, China) 160 slice cardiac CT scanner. Panel A shows remarkable 
clarity of the in-stent lumen as compared to the lower version machine study performed a few years earlier shown in Panel B. 

 

3. The usefulness of coronary artery 
calcium scoring (CACS) 

CACS is widely accessible, less complicated to operate (e.g., 
not depending on heart rate), does not need contrast, is less 
costly, and provides highly reproducible results. Although 
this test has been available for the past 20 years, there has 
recently been increased interest in its possible use of 
CACS in patients with low-risk symptomatic and the clinical 
importance of non-calcified plaque and stenosis in the 
absence of calcium. It has been shown that only 1 to 2% of 
symptomatic patients with CACS zero have potentially 
obstructive CAD, and only 0.4% of these patients have >70% 
stenosis. None of these patients will need coronary 
revascularization or have a bad prognosis within two years. 
(6) Patients with low and intermediate risk of CAD who 
appear with chest discomfort and have a normal 
Electrocardiogram, normal cardiac biomarkers, and a CACS 
of zero may be considered for early discharge without 
further screening in the emergency department (7). 

CACS has been shown to continue improving discrimination 
and risk revaluation for major CAD and CVD in community-

dwelling people who do not exhibit symptoms, even when 
Framingham risk factors are considered. It correctly 
reclassified two-thirds of the people in the Framingham 
Heart Study who were in the intermediate-risk group. Of 
those, 77% were moved down to low risk, and 23% were 
moved up to high risk (8). The ability to identify 
asymptomatic occult CAD in community residents who 
appear to be at low risk based on the Framingham risk 
scoring and to prevent CAD progression and incidents is a 
crucial addition of CACS. 

4. CTCA value in the emergency room 
(ER) 

Patients with low to intermediate-risk chest discomfort have 
found CTCA to be helpful in the ER. Those individuals without 
visible plaque can be discharged from the hospital 
immediately and securely. After a negative 6-hour troponin 
level, patients with non-obstructive plaque and mild to 
moderate stenosis can be discharged, whereas patients who 
have severe stenosis must be hospitalized to the hospital for 
further care (Figure 5). It has been determined that there are 
no fatalities or incidences of acute coronary syndrome 
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during the follow-up period. It has been demonstrated that 
patients without a CTCA have a greater rate of chest pain-
related rehospitalization. The average stay period is similarly 
shorter for patients having a CTCA (9). 

 

5. CTCA usefulness for percutaneous 
coronary interventions (PCI) 

More than 2cm long, over severely angulated segments, 
heavily calcified, across ostia or bifurcations, with uneven 
surfaces and adherent thrombi, past tortuous segments, or 
completely blocked coronary artery lesions are considered 
complicated and have limited effectiveness following 
stenting (10). Therefore, it is essential to recognize these 
lesions. Brett M. Wertman et al. (11) revealed that CTCA was 
able to recognize Type C complex lesions well, which was 
related with increased contrast use and procedure duration 
during PCI. (Figure 6) 

CTCA can differentiate angiographic TIMI grade 3 (normal) 
flow from TIMI grade 2 (sluggish) flow in patients with acute 
MI by comparing the contrast density at the distal end of 
the thrombolyzed artery with that proximal to the stenotic 

 lesion. For TIMI 3, the ratio of CTCA number distal to CTCA 
number proximal should be greater than 0.54. CTCA can be 
used to check on coronary reperfusion after thrombolysis 
without any invasive procedure. 

 

6. Plaque composition on CTCA and 
risk prediction 

Due to the high resolution of CTCA images, the atheroma's 
composition can be depicted in exquisite detail. (Figure 7) 
Instead of exclusively soft plaques, we discovered that 
mixed plaques with soft and calcific portions are 
substantially more likely to rupture (13). It is now 
established that plaque morphology influences primary 
prevention, predictors of ischemia, and prognosis. Plaque 
composition, namely calcified vs soft and/or mixed plaques, 
as well as the presence of soft or mixed plaques, have been 
proven to be the highest predictor of events as a likely 
measure of plaque vulnerability, regardless of lesion 
severity. (Figure 8) (14, 15). The complete coronary tree is 
visible, and the overall plaque load and extent of diseased 
segments are assessed. 

 
 

Figure 5. A 57-year-old man presented to the emergency room with chest discomfort. The ECG, echocardiogram and cardiac biomarkers were negative. However, CTCA 
revealed significant calcified plaque burden in the coronary arteries. Panels A, B and C show calcified mid LAD plaque causing more than 80% stenosis (pink arrow). Panels D 

and F show diffuse distal disease of the major OM branch (green arrow). Panel E shows a significant stenosis at the LCx- (posterior descending artery) PDA ostium (pink arrow). 
The patient was treated with a three vessel CABG with grafts to LAD, Diagonal and the LCx – PDA. 
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7. Plaque regression assessment by 
CTCA 

The detection of early CAD on CTCA would be useless if it 
could not be resolved with medication. Several multicenter, 

randomized lipid-lowering trials utilizing both invasive 
catheter angiography (ICA) and clinical assessment, on the 
other hand, found a minimal change (1 to 3%) in luminal 
diameter on ICA. Nonetheless, these same studies found a 
25% to 75% reduction in severe occurrences, such as 
myocardial infarction (16,17). 

 

 
 

Figure 6. Panel A shows a curved reconstruction with a mixed plaque in the mid LAD. The 3D image gives the relation of the stenotic segment to side branches as well as the 
curvature of the artery in panel B. The lesion length and vessel diameter can be measured in Panel C. Panel D shows the myocardium in the 2 chamber long axis view revealing a 

dark area in the sub-endocardium of the anterior wall representing a perfusion defect at rest. Patient was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 
160 slice cardiac CT scanner. 

 

This shows that the benefits of lowering lipids come from 
stabilizing lipid-rich plaques, not from changes in the size of 
the ICA lumen. CTCA is able to accurately measure the 
diminution in plaque size. Even at modest doses, the 
administration of statins may cause significant changes in 
the CTCA plaque shape, an absolute reduction in plaque 

volume without a discernible change in lumen size, and 
variations in lipid profile that are not statistically 
meaningful. This shows that plaque morphological changes 
may emerge early on, even with only modest alterations to 
the lipid profile, as a result of statin therapy (18). 
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Figure 7. Panel A shows two eccentric mixed plaques marked by white dots in the proximal LCx artery with a soft component and a small, calcified nodule. Inset shows the 
cross section of one of the plaques. Panel B shows a thick eccentric soft plaque with no calcified component marked by white dots in the proximal LAD artery. Inset shows the 

plaque in cross section. 

 

8. Stress myocardial CT perfusion (CTP) 

CTP contains anatomic as well as physiological information 
(i.e., myocardial perfusion). The viability of stress myocardial 
CTP has been shown in multiple single-center studies. In 
addition, it has been demonstrated that a combination 

CCTA/CTP strategy increases the diagnostic accuracy for 
detecting hemodynamically severe stenosis compared to 
CTCA individually. Stress and reversible myocardial perfusion 
deficits detected by CTP utilizing a visual semi-quantitative 
technique and a visually guided software-based method are 
comparable to those assessed by SPECT (19,20). 
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Figure 8. An eccentric ruptured plaque is seen along the inferior wall of the LAD marked by white dots. The straight arrows show the central ulceration on the plaque luminal 
surface. The arrowhead marks the cavity within the plaque filled with intraluminal contrast. Another plaque is seen marked by stars in the anterior wall of the LAD. This shows 

an ulceration along the inferior shoulder (curved arrow). Patient was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 160 slice cardiac CT scanner. 

 

9. CT fractional flow reserve (CT-FFR) 

CT- FFR predicts the functional relevance of coronary artery 
lesions using computational fluid dynamics. The strongest 
indicator of a positive CT-derived FFR, according to the 
Assessing Diagnostic Value of Non-invasive FFRCT in 
Coronary Care (ADVANCE) Registry, is stenosis greater than 
70%. However, the ADVANCE Registry, like invasive FFR 
studies, demonstrates that there is a gap between 
morphological assessment of coronary stenosis and the 
physiological consequences of such lesions. 28.4% of severe 
lesions were found to have no functional significance. 
Similar to this, there is a positive CT- FFR rate of 20.8% in 
patients with non-obstructive coronary structure (stenosis 
grade 30-49%) (21). 

10. Coronary Bypass Graft (CABG) 
imaging on CTCA 

CTCA is quite reliable for determining graft patency after 
CABG. In a 3D picture, it shows every graft together. 
Studying the native arteries in relation to the failed grafts 
enables a therapeutic strategy to determine whether a PCI 
is warranted. In our study, we discovered that regardless of 
the number of years following CABG, 72% of all grafts, 
including LIMA, SVG, RIMA, and LRA, failed when placed on 
coronary arteries with less than 75% stenosis as opposed to 
22.8% of grafts failing when positioned on coronary arteries 
with more than 75% stenosis (p < 0.0001) (Figure 9) (22). 
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Figure 9. A 67-year-old man 6 years post CABG comes with recurrence of angina. Sequential LIMA to Diagonal and Obtuse marginal as well as saphenous vein grafts (SVG) to 
LAD, right ventricular branch and right PDA are patent. However, short critical stenosis is seen in the proximal segment of the SVG to LAD (green curved arrow) as well as the 
SVG to PDA (orange arrow). These were successfully stented. Patient was scanned on a uCT 780 (United Imaging Healthcare, Shanghai, China) 160 slice cardiac CT scanner. 
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11. Conclusion 
In the modern era, CCTA has developed into an ideal test 
that can accurately and consistently image the true severity 
of coronary artery stenosis, a detailed representation of the 
atheroma causing this, the downstream impact on the 
myocardium, and functionality of the heart with minimum 
contrast dose and radiation in a short time with no patient 
discomfort. 

CTCA demonstrates that the existence of soft and mixed 
plaques can result in higher major cardiovascular events 
score than a clinical risk model, regardless of the severity of 
the lesion. CTCA can be utilized in the emergency unit to 
check the coronary arteries and determine who needs to be 
hospitalized for an acute cardiac problem quickly and 
noninvasively. For patients who do not experience a cardiac 
incident, it is confidently concluded that a secure and early 
discharge is appropriate. By demonstrating a decrease in 
plaque volume, CTCA could be able to show a meaningful 
effect at lower statin doses. 

It has been demonstrated that CACS improves risk 
categorization and discrimination for significant CAD and 
CVD irrespective of Framingham risk variables in 
asymptomatic community-dwelling individuals. CT-FFR, in 
conjunction with CTCA, could become the optimum test for 
assessing the functional relevance of a stenosis and guiding 
therapies. 

 

12. Image/Figure Courtesy 

All images are the courtesy of Advantage Imaging and 
Research Institute, Mylapore, Chennai, India. 
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The association between technical breakthroughs and 
human well-being in terms of life expectancy has been well 
established through the past several centuries. Since its 
development in the 19th century, radiology has expanded 
swiftly to improve diagnosis and thereby treatment of 
disease for hundreds of millions of patients all over the 
world. The medical sector has been revolutionized by the 
introduction of cutting-edge technologies and methods that 
have increased productivity, decreased costs, and increased 
patient safety. Radiology, in conjunction with pathology, has 
become an essential component of both the diagnostic and 
treatment processes utilized for a wide variety of diseases.  

Radiology services are now a crucial component of every 
hospital, including in small hospitals and nursing homes, to 
find the root cause of illness in patients. It includes X-rays, 
Ultrasonography, Computerized Tomography (CT) scans and 
Magnetic Resonance Imaging (MRI) scans, Positron Emission 
Tomography (PET), Ultrasound etc. There are around 50,000 
MRI1 and over 300,000 CT systems installed worldwide. 
Furthermore, there are roughly 1,600 PET/CT systems in use 
worldwide. Access to modern imaging systems like CT is 
restricted in low- and middle-income countries (LMIC), with 
most available models being 16-slice or less, although a 
trend to higher-end imaging systems is emerging. The 
current standard for magnetic field strength in LMIC is 1.5T 
MRI. 3T MRI access is considerably more limited. Japan has 
the largest per capita number of MRI (55.21 per million 
population) and CT systems among developed nations, 
followed by the United States and Germany. For LMICs like 
South Africa, India, Mexico, and the Middle East, the MRI 
systems per million population are 0.23, 1.50, 2.57, and 
1.90, respectively2. 

 

 

 

 

According to a survey, there are currently about 30,000 CT 
systems and 3,500 MRI3 systems in India. Now, multi-
detector CT systems are commonly seen in use and 64- and 
128-slice systems have become a reality. It will not be 
surprising if the figure doubles in the next ten years. The 
next decade will be dominated by molecular imaging 
worldwide, and developing nations are quickly catching up. 
There are currently 222 PET/CT4 systems in India 
performing around half million PET/CT scans annually.  

The International Agency for Research on Cancer (IARC) 
estimates that 18 million new cases of cancer and 10 million 
cancer deaths were reported in 2020. The load may 
increase in the future because of a number of factors, 
including sedentary lifestyles, unhealthy diets, and fewer 
births in nations that are transitioning economically. We are 
currently observing good trends in developed countries; the 
expansion of healthcare facilities will undoubtedly promote 
the expansion of radiology services, which can aid 
Radiologists in the diagnosis of life-threatening disease like 
cancer. However, many developing and underdeveloped 
nations experience difficulties in effectively implementing 
sub-specializations of radiology. These difficulties include a 
lack of money, inadequate infrastructure and equipment, a 
lack of knowledge, politics, the emigration of radiologists, 
perfectionism, and others. The other two problems are a) 
accessibility and b) awareness, both of which are equally 
crucial. Access to hospitals is another concern, as people 
from remote areas may have to travel for several days to 
reach a city hospital. This, along with the high cost of care, 
causes many people to visit hospitals only as a last option, 
resulting in poor outcomes for many diseases.  

 

 

 

 

 

1Ogbole GI, Adeyomoye AO, Badu-Peprah A, Mensah Y, Nzeh DA. Survey of magnetic resonance imaging availability in West Africa. Pan Afr Med J. 2018 Jul 31;30:240. doi: 
10.11604/pamj.2018.30.240.14000. PMID: 30574259; PMCID: PMC6295297. 

2Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J, Brecher J, Lin R, Ding H, Akudjedu TN, Anazodo UC, Jagannathan NR, Ntusi NAB, Simonetti OP, Campbell-
Washburn AE, Niendorf T, Mammen R, Adeleke S. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging. 
2022 Jun 1;23(6):e246-e260. doi: 10.1093/ehjci/jeab286. PMID: 35157038; PMCID: PMC9159744. 

3https://www.indianradiologist.com/index.php/review/made-in-india-mri 
4Tharma AR. Nuclear Medicine in India: A Historical Journey. Indian J Nucl Med. 2018 Nov;33(Suppl 1):S5-S10. doi: 10.4103/0972-3919.245053. PMID: 30533977; PMCID: 
PMC6243721. 
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Over the past few years, Artificial Intelligence (AI) has 
attracted immense attention in the field of medicine, 
particularly in radiology. In the next ten years, the use of AI 
in radiology will be a significant advancement that will result 
in a massive paradigm shift in how radiology is managed 
globally. We believe that the introduction of AI into clinical 
practice is the only way to bend the current demand-supply 
mismatch between the number of scans that need to be 
read and the Radiologists available to read them. With vast 
amounts of data now readily available, and a new wave of AI 
algorithms which are much more sophisticated and holistic 
than before, it is clear that the radiology department of the 
future will run hundreds of AI systems in tandem. AI will 
contribute to the global development of personalized 

precision medicine and provide individualized treatment 
alternatives. Radiologists around the world must 
understand these potential AI areas of application and 
should be strongly encouraged to help shape the future of 
Radiology and medicine by becoming the driving force 
behind the development and implementation of AI in 
clinical practice.  India is uniquely positioned in this AI race 
for two key reasons. First, India has highly skilled physicians 
that are trained in challenging clinical settings. Secondly, 
India is extremely heterogenous in terms of the diseases / 
patient-base – with the presence of both western and 
eastern diseases in a single country. This combination 
allows for India to be best suited for AI implementation in 
the clinical setting. 

 

 
 

Figure 1. Graph of number of AI in Radiology based publications by country from year 2000 to 2019. 

 

The market size5 for AI in healthcare surpassed USD 4.2 
billion in 2020 and is predicted to expand at a CAGR of 
approximately 33.7% between 2021 and 2027. In 2020, the 

medical imaging & diagnosis market sector held around 
24.6% market share. The uses of AI in modern healthcare 
practices continue to grow.  

 

 

5https://www.gminsights.com/toc/detail/healthcare-artificial-intelligence-market 
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Figure 2. AI in the Radiology market, 2022 (million USD) by region, based on usage and growth. 

 

Healthcare is expensive, and cost is widely regarded as the 
industry's most significant impediment worldwide. This 
major impediment can be overcome by lowering scanning 
and operational expenses without compromising system 
quality. The training of more imaging specialists to fulfill the 
excessive demand, the transformation of existing 
Radiologists into subspecialty Radiologists, and the 
reduction of the high operating, scanning, and equipment 
expenses of MRI and CT scans are a few potential solutions. 
New solutions can be achieved by expanding exchange 
programs among Radiologists and residents from various 
countries and sharing their expertise. In less developed 
nations, the availability of subspecialist radiology training is 
limited. To overcome this shortcoming, cost-effective and 
innovative training methods are required. MRI systems that 
can detect diseases and injuries presently cost up to $3 
million and have monthly operating costs of roughly 
$15,000, making them inaccessible for 70% of the world's 
population6. The image quality resulting from earlier 
attempts to create more economical scanners has not been 
sufficient to be used for medical applications. However, 
technical improvements in the last two years have raised 
the prospect of "generating brain images with low-cost 
hardware7.” 

Current CT systems with 32 or 64 slices are up to four times 
faster than earlier models8. Machine learning has created 
the great potential to advance medical imaging, specifically 
CT scanning, by reducing exposure to radiation and by 

harnessing the power of AI. Newer digital technologies, 
including voice recognition and structured formatted 
reporting, also improve Radiologists' workflow, productivity, 
and reporting accuracy. Over the next decade, we will see 
more and more imaging departments across the world 
recognize the need to embrace digital technologies and 
profit substantially as a result. Tele-Radiology will be 
increasingly implemented in less developed nations, 
allowing for three changes: increased reach of high-quality 
radiologic services to remote regions, more sub-
specialization within the field of radiology, and increased 
availability of emergency radiology services. 

The time has come for developing countries to implement 
continuing medical education programs for professional 
Radiologists, and improve access to imaging equipment, 
workforce capacity, digital technologies, and PET 
radiopharmaceuticals. In recent years, a growing number of 
similar programs have emerged in low- and middle-income 
nations to produce substantial health and economic 
benefits and reduce the cancer burden globally. In fact, 
United Imaging’s entry into India with the latest technology 
is testament to the fact that India is now ready to receive 
attainable innovative imaging systems. We have been using 
their PET/CT (uMI® 550) system for the past year and 
everyone – from patients to clinicians to Nuclear Medicine 
Physicians – is amazed at the quality of images, and 
reduction in 18F-FDG dose and scan time. 

 

 6https://www.natureasia.com/en/research/highlight/13913 
7Liu, Y., Leong, A.T.L., Zhao, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12, 7238 (2021). 
8https://www.neurologica.com/blog/advances-ct-scan-technology 
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1. Introduction  
PET/MR has been utilized as an important medical imaging 
technology in clinical radiology for more than a decade. The 
introduction of the integrated PET and MR modalities has 
made it possible to simultaneously acquire high-resolution 
MR images with excellent soft tissue contrast [1-2] with 
metabolic PET images while minimizing ionizing radiation 
exposure to the patients. Furthermore, advances in 
improved attenuation correction [3-7] and MR triggered 
motion correction [8-11] have led to improved image 
quality, making PET/MR a preferred imaging modality [12].  

Once such clinical application where PET/MR is particularly 
advantageous and shows potential for innovation is the 
assessment of non-ischemic cardiac disease [13]. Cardiac 
PET [14-15] allows for the assessment of cardiac viability or 
perfusion using different tracers. With evolving advanced 
MR imaging sequences, anatomic and functional analysis of 
the heart and large vessels has manifested in the form of 
high-definition cine sequences providing dynamic 
visualization of the heart and vascular structures. First-pass 
imaging of contrast medium transit through the 
myocardium has also been shown to depict stress-induced 
alteration in myocardial blood flow, differentiating between 
normal and hypo-perfused myocardium [16]. The accuracy 
of PET for the measurement of unmatched regions of 
myocardial perfusion, biomarkers and myocardial viability 
has further contributed to the increasing scope of 
applications for PET/MR imaging. 

Of the different cardiac applications of PET/MR, the 
detection of presence and extent of myocardial fibrosis is 

one of relevance in various cardiac diseases. Both the PET 
and MR modalities in such cases can not only quantify the 
fibrosis, but also offer insight into early detection and 
prognostication of such underlying conditions. The aim of 
this article is to review the existing technologies and clinical 
examples of PET/MR imaging in the evaluation of four main 
non-ischemic causes of myocardial fibrosis, namely non-
ischemic cardiomyopathies, cardiac amyloidosis, 
myocarditis and heart failure. All cardiac PET/MR studies 
were performed on a United Imaging Healthcare’s uPMR® 
790 system (United Imaging Healthcare, Shanghai, China). 

 

2. Technical review of PET/MR 
technology 

2.1 PET radiotracers 

While 82Rb-RbCl, 13N-NH3.H2O and 15O-H2O are the common 
radiotracers utilized in PET perfusion, there have been 
newer PET imaging agents being studied for various cardiac 
applications. Table 1 summarizes these novel cardiac PET 
imaging radiotracers, and their target disease processes. 
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Table 1. summary of novel PET radiotracers in evaluation of cardiac disease. 

Target disease process Cardiac PET radiotracers 

Perfusion 13N-NH3, H2O, 82Rb, 15O-H2O, 18F-flurpiridaz 

Myocardial sympathetic nerve activity 11C-hydroxyephedrine, 18 F-LMI1195 

αvβ3 and αvβ5 integrins in angiogenesis 

or post myocardial infarction reperfusion 

18F-Fluciclatide 

Cardiac amyloid 11C-PIB, 18F-florbetapir, 18F-flutemetamol, 18F-florbetaben 

Fibrosis 68Ga-FAPI, 18F-FAPI 

Atherosclerotic microcalcification 18F -NaF 

Tissue hypoxia 18F-MISO, 18F-HX4, 64Cu-ATSM, 64Cu-CTS 

Angiogenesis 68Ga -NOTA-RGD, 18F -galacto-RGD 

Macrophage-dependent inflammation  68Ga-pentixafor, 64Cu-DOTATATE, 68Ga-DOTATATE, 89Zr-DNP 
  
 

2.2 CMR sequence technology 

Table 2 summarizes the commonly used MRI sequences in 
the anatomic, functional, and biochemical characterization 

of myocardial tissue. As described in the applications below, 
these sequences provide information on early and late 
stages of various non-ischemic conditions [17]. 

 
Table 2. summary of commonly used sequences in the assessment of myocardial tissue and the relevant applications or findings. 

Specific CMR sequence Relevant application/finding 

CINE T1W Function, anatomical details, fat 

Black Blood T2W Anatomical details, edema 

T1 mapping Fibrotic areas (regional or diffuse), amyloidosis, fat 

T2/T2* mapping Edema, iron 

ECV mapping  Fibrotic areas (regional or diffuse), amyloidosis 

Late gadolinium enhancement Fibrotic areas (regional fibrosis), viability 

 
 

2.3 PET/MR cardiac image registration 

The main challenge for cardiac PET in clinical practice is the 
compensation of physiologic motion, such as respiratory 

and cardiac motion, for which a few methods have been 
developed to overcome the problem [18-20] including a two-
stage cardiac PET and LGE co-registration method (Figure 1) 
[21]. 
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Figure 1. Two-stage cardiac PET and MR LGE co-registration method. 

 

Figure 1 is an illustration of image co-registration of LGE and 
PET with two-stage registration. This comprises of four 
stages. The first is binning of list-mode PET data into eight 
respiratory bins based on respiratory signal. The second 
step is comparison of FLASH and respiratory phase resolved 
PET to choose one FLASH-registered phase. Thirdly, rigid 
registration is manually performed between 3D FLASH and 
2D LGE and get the 3D displacement field. Finally, the 
displacement field is used to warp the images and generate 
LGE-registered PET.  

 

3. Non-ischemic	cardiomyopathies – 
hypertrophic and dilated 
cardiomyopathies  

Non-ischemic cardiomyopathies are defined as diseases of 
the myocardium associated with mechanical or electrical 
dysfunction exhibiting inappropriate ventricular 
hypertrophy or dilatation and include dilated 
cardiomyopathy (DCM) and hypertrophic cardiomyopathy 
(HCM). Causes include primary and secondary causes, 

encompassing genetic and acquired factors. CMR remains 
the main diagnostic tool for distinguishing many of these 
diseases; however, for certain diseases, PET can add 
valuable information by characterizing metabolic activity in 
the myocardial region.  

LGE sequence can detect focal myocardial fibrosis and 
provide significant risk stratification for sudden cardiac 
death, mortality, and heart failure hospitalization in patients 
with non-ischemic cardiomyopathy [22]. The combination of 
metabolic information from 18F-fluoro-deoxy-glucose PET 
(18F-FDG PET) and LGE can also provide additional evidence 
for the evaluation of myocardial viability and inflammation 
in non-ischemic cardiomyopathies.  

 

Case Example 

A 67-year-old male patient with known dilated 
cardiomyopathy (DCM) was evaluated for myocardial 
viability assessment. 18F-FDG PET/MR was performed at an 
uptake time of 60 minutes. Figure 2 shows short axial LGE 
images (A, C) and LGE/PET fusion images (B, D) of two LGE-
enhanced lesions. 

 



 67 

uINNOVATION-Global (Scientific Magazine of United Imaging Healthcare)  

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  
 

 
 

Figure 2. PET/MR images of a patient with dilated cardiomyopathy (DCM). Short axial LGE images (A, C) and LGE/PET fusion images (B, D) show two LGE-enhanced lesions. 

 

4. Cardiac amyloidosis (Restrictive 
cardiomyopathy) 

Cardiac amyloidosis is a myocardial condition characterized 
by extracellular amyloid infiltration throughout the heart 
and is the leading cause of morbidity and mortality in 
systemic amyloidosis. The two types of amyloid that 
commonly infiltrate the heart include acquired monoclonal 
immunoglobulin light chain amyloid (AL) and transthyretin-
related (familial and wild-type/senile) amyloid (ATTR).  
Differentiation of the two types is important because they 
have different prognoses and are amenable to different 
management strategies. 

Early cardiac amyloidosis is challenging to diagnose and 
may only present with the features of right-sided congestive 

heart failure in advanced disease. While endocardial biopsy 
is considered the gold standard for diagnosis of cardiac 
amyloidosis, it is not commonly used due to its high rate of 
complications. Other non-invasive diagnostic methods used 
include electrocardiography, echocardiography, CMR and 
nuclear medicine imaging.  

Steady state free precession cine sequences in CMR are 
used to assess cardiac function and structure, while LGE 
imaging can diagnose cardiac amyloidosis. Although CMR is 
sensitive and specific for cardiac amyloidosis, CMR 
classically cannot differentiate the subtypes of cardiac 
amyloidosis and PET imaging is useful in this regard. 
However, recent studies have shown that AL frequently 
manifests as diffuse subendocardial LGE, while ATTR 
typically manifests as transmural LGE. MR parametric 



 68 

uINNOVATION-Global (Scientific Magazine of United Imaging Healthcare)  

   uINNOVATION-GLOBAL (Scientific Magazine of United Imaging Healthcare)  
 

mapping has also shown that the T1 value of ATTR patients 
was significantly higher than that of hypertrophic 
cardiomyopathy and normal controls, but not as high as 
that of AL patients, further helping in the characterization of 
cardiac amyloidosis.  

Nuclear medicine imaging plays an important role in the 
diagnosis, classification, prognostic evaluation, and 
therapeutic response monitoring of myocardial amyloidosis 
[23-24]. Studies using 18F-NaF PET imaging [25-26] have 
shown that the myocardial uptake in ATTR patients is higher 
than AL patients and control groups, and the myocardial 
radioactivity uptake was consistent with the extent of 
damaged myocardium as seen on MR LGE. Similar studies 
have shown differences in uptake using 18F-florbetapir and 
18F-florbetaben imaging in both ATTR and AL patients [27-
28]. Hence, an important benefit of combining PET with 
CMR is the combination of quantifiable parameters to 
potentially aid prognosis and track disease progression. 

Case Example 

A 65-year-old female with underlying history of amyloidosis 
presented with chest congestion and dyspnea. 
Echocardiography revealed pericardial effusion, pleural 
effusion, interventricular septum and left ventricular wall 
thickening. Gadolinium contrast enhanced CMR and 
dynamic cardiac PET imaging (Figure 3) was performed 
immediately after injection of 18F-florbetapir (AV45). CMR 
imaging revealed LV hypertrophy and impaired systolic 
function (LVEF=22%). LGE imaging (B, short axis view; E, 4 
chamber view) demonstrated transmural late enhancement 
in the left ventricle. Delayed whole body maximum intensity 
PET (A, 90min post-injection) demonstrated elevated AV45 
uptake in heart (SUVmax=8.86), lung (SUVmax=2.69) and 
spleen (SUVmax=7.75), compared to moderate uptake in the 
liver (SUVmax=3.09) caused by hepatobiliary excretion of 
the drug. 

 

 
 

Figure 3. PET/MR images of a patient with cardiac amyloidosis. 

 

5. Myocarditis 
Myocarditis is an inflammatory disease of the myocardium 
that can be caused by various conditions including viral 
infections, autoimmune reactions, toxin exposure, drugs, 
and idiopathic factors [29].The condition has a predilection 

in young subjects, especially males [30]. Clinical symptoms 
are highly variable, making diagnosis challenging. In 
addition, investigations such as laboratory biomarkers (such 
as troponin, C-reactive protein), electrocardiography and 
echocardiography are nonspecific. Definite diagnosis relies 
on endomyocardial biopsy but this is not performed 
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frequently in practice due to its risk of complications. 

Pathophysiological processes linked to myocardial 
inflammation, including myocardial hyperemia and edema 
in the early stages, and fibrosis or scarring in the later 
stages, as well as associated processes such as pericardial 
effusion and global or regional wall motion abnormalities, 
can be assessed using MR imaging [31]. The Lake Louise 
CMR criteria often used in assessment of myocarditis 
encompasses the three aspects of myocardial inflammation 
namely edema, hyperemia and necrosis and/or fibrosis. In 
addition to these, multiparametric T1 and T2 mapping can 
also be used for tissue characterization. 

The use of 18F-FDG PET [32] allows accurate assessment of 
the extent and grade of both active and healed 
inflammatory processes. FDG uptake in myocarditis could 
be focal, diffuse, or ‘focal on diffuse’ depending on the 
underlying disease [33]. Thus, 18F-FDG PET/MR imaging has 
already been shown to be highly clinically relevant in 
patients with suspicion of myocarditis, with increasing 
evidence that 18F-FDG PET/MR imaging can diagnose, grade, 
and monitor myocarditis [34-36], with a clinical sensitivity of 
74% and a specificity of 97% [37]. Notably, it has also been 

shown that patients with biopsy-proven myocarditis have 
had abnormal uptake noted on 18F-FDG PET imaging, while 
having no corresponding evidence of myocardial damage on 
MR imaging, allowing for early diagnosis of myocarditis. 
Performing FDG PET imaging after treatment could also 
show interval improvement or resolution of the abnormal 
FDG uptake, highlighting further potential application in 
monitoring treatment response [38]. 

Case Example 

A 24-year-old male presented with signs and symptoms 
suggestive of myocarditis. Gadolinium contrast enhanced 
CMR and dynamic cardiac PET imaging starting immediately 
after injection of 18F-FDG (Figure 4). CMR imaging showed 
normal anatomy of the atrioventricular chambers with 
normal left ventricular motion and function (LVEF 70%). 
Delayed enhancement imaging showed blurred patchy, 
slightly high signal and line-like high signal in the basal 
segment of the anterior and inferior lateral walls of the left 
ventricle, and no obvious abnormal enhancement was 
found in the remaining ventricular wall segments. 
Myocardial metabolic imaging revealed increased 
radioactive uptake in each segment of the left ventricle. 

 

 
 

Figure 4. PET/MR images of a patient with myocarditis. 
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6. Heart Failure 
Heart Failure is defined as a complex clinical syndrome 
resulting from any structural or functional cardiac condition 
that impairs the ability of the ventricle to fill or eject blood 
[39]. Several criteria have been proposed to diagnose heart 
failure such as the Framingham criteria [40]. 
Echocardiography is frequently used to provide information 
on the ventricular ejection fraction as well as the underlying 
cause of heart failure. Single-photon-emission computed 
tomography (SPECT) remains the most common imaging 
modality used for myocardial perfusion imaging in heart 
failure, but it has significant disadvantages such as limited 
resolution and involves the use of ionizing radiation. Due to 
these factors, there has been increasing use of myocardial 
perfusion imaging using PET to quantify myocardial blood 
flow using tracer kinetics, for which the sensitivity and 
specificity is thought to be approximately 90% [41-44]. It is 
also notable that a meta-analysis of single and multi-center 
studies confirmed the excellent sensitivity and specificity of 
CMR to quantify myocardial perfusion at rest and during 
stress [43-44]4. There is report showing that MR perfusion 
imaging is compared to that of SPECT and showed 
significant agreement in results with PET perfusion [45-46]-

46. The combination of PET and MR imaging allows for direct 
comparison of myocardial blood flow under resting and 
stress conditions. The assessment of myocardial viability is a 
standard approach utilized in patients with advanced 
coronary disease or who are in early or advanced states of 
heart failure. Identification of glucose utilization in viable 
myocardium by PET is made possible by FDG uptake 
demonstrated in myocardial segments with decreased 

perfusion. Based on meta-analyses, 18F-FDG PET predicts 
functional recovery after revascularization with a sensitivity 
of 92% and a specificity of 63% [47-48]. LGE also allows the 
identification of scarred myocardium as signal enhanced 
areas.  

 

Case Example 

Figure 5 shows an example of 68Ga-FAPI and FDG PET 
imaging of a 77-year-old male with history of coronary 
artery disease, that presented with acute pulmonary 
embolism. Echocardiography showed severe pulmonary 
hypertension (pulmonary artery systolic blood pressure 
elevated at 99mm Hg), right atrioventricular enlargement, as 
well as decreased right ventricular motion and function, 
with normal left ventricular systolic function. Pulmonary 
angiography and balloon angioplasty was performed and 
revealed multiple filling defects in the bilateral pulmonary 
arteries with poor distal perfusion. Gadolinium contrast 
enhanced CMR and dynamic cardiac PET imaging starting 
immediately after injection of 68Ga-FAPI was performed 
(Figure 5). Gadolinium contrast enhanced CMR and dynamic 
cardiac PET imaging starting immediately after injection of 
FDG was performed the following day. CMR showed right 
atrial and ventricular enlargement and hypertrophy as seen 
in the 4-chamber and short axis views. 68Ga-FAPI PET/MR 
imaging showed diffusely increased FAPI uptake in the right 
atrial muscle wall and increased scattered patchy FAPI 
uptake in the right ventricular muscle wall. 18F-FDG PET/MR 
fusion images demonstrated that radioactivity uptake in the 
right ventricle and atrium were increased, more so in the 
right ventricle. 
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Figure 5. 68Ga-FAPI and FDG PET/MR images of a patient with heart failure and extensive fibrosis. 

Figure 5A 

Figure 5B 
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7. Conclusion and Future Directions 
Currently, there are three vendors providing PET/MR 
integrated scanners worldwide: Siemens Biograph mMR 
(2010), GE SIGNA (2013) and United Imaging Healthcare’s 
uPMR® 790 (2017). The hybrid MR and PET imaging has 
demonstrated its clinical advantage in many cardiac 
applications and is increasing used in clinical routine 
imaging. Some disadvantages to this advancing technology 
exist, including the high cost of PET/MR exams and the 
complex technology requiring significant training in both 
PET and MR technology for technologists to run the scans. 
In addition, several cardiac devices including pacemakers, 
implantable cardioverter-defibrillators, and mechanical 
heart valves, as well as some coronary stents, are 
contraindications to PET/MR scans. However, with further 
improvements in PET/MR imaging technology and more 
studies evaluating the use of new imaging tracers, there is 
an exciting potential to harness the advantages of PET/MR 
in evaluating different cardiac diseases. Prospective single-
center and multi-center study with large sample size are 
urgently needed to further explore the indications and new 
application area of integrated PET/MR. 

 

8. Image/Figure Courtesy 
All images are the courtesy of Shanghai East Hospital, Tongji 
University School of Medicine, Shanghai, China.  
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1. Background	 

Aotearoa New Zealand, an island nation in the middle of the 
Pacific Ocean, is split into two main land masses, with a 
collective land area equivalent to that of the state of 
Colorado. New Zealand’s land mass, however, stretches in a 
north-south orientation, equivalent to the distance from 
Pennsylvania to Florida. The country is also sparsely 
populated relative to its land area, with a population of only 
5 million and only 50% of the population residing in one of 
six major urban centres1,2.   

In total, there are only six PET/CT scanners in New Zealand, 
of which five are located in three major urban centres on 
the North Island, and one is a solitary PET/CT scanner on 
the South Island. The largest city in New Zealand, Auckland, 
in the upper North Island (population of 1.5 million), has 
three of the six PET/CT scanners3.   

At Mercy Radiology, a private radiology group with a long 
history of excellence in molecular imaging, we operate two 
of the three PET/CT scanners in Auckland. We are also 
proud to have the only New Zealand’s PET/CT facilities with 
digital PET scanners: United Imaging’s uMI® 550 and uMI® 
780.   

To understand our molecular imaging journey, it is useful to 
start with the New Zealand health landscape. Healthcare is 
delivered to New Zealanders in a two-tier system: the public 
health sector, which is funded by taxpayers providing 
universal health coverage, and the private sector.   

Public health sector services include acute and elective 
inpatient care, outpatient, mental health and long-term 
care. Imaging needs are provided by in-hospital radiology 
departments and outpatient centres.  

 

 

 

 

 

Total New Zealand government health spending as 
percentage of GDP is just under 10% in 2019 and is 
expected to have been increased in the last 2 years4.   

The private sector on the other hand, is made up of smaller 
outpatient specialists’ offices, smaller private hospitals and 
private radiology providers. Private sector work is funded by 
private insurance companies, self-funding patients or the 
New Zealand government by way of outsourced public 
hospital work. Treatments and associated imaging related 
to accidents, usually conducted in the private sector, are 
covered by a no-fault Accident Compensation Scheme 
(ACC).  

All six PET/CT scanners in Aotearoa New Zealand are 
currently operated by private radiology groups. The New 
Zealand Ministry of Health determined several years ago 
that rather than providing for a PET/CT facility in one of the 
many public hospitals in the country, patients treated in the 
public sector would be outsourced to private PET providers 
for their PET/CT scans. Currently, provided that patient’s 
disease status meets one of the numerous approved 
national criteria for a funded PET/CT scan, patients would 
be able to access a fully funded PET/CT scanner.      

Despite a clear pathway allowing patients to access a 
PET/CT scan, with 760 scans per million of population, OECD 
Health Statistics (2) suggests an overall underutilisation of 
PET/CT scanners in Aotearoa New Zealand. Although the 
numbers are likely to be at least twice that once privately 
funded patients are taken into account, it remains much 
lower than Aotearoa New Zealand’s neighbour, Australia, 
which performs 4,500 scans annually per million of 
population.  

 

 

 

 

*Mercy Radiology New Zealand has a research agreement with United Imaging Healthcare. Dr. Remy Lim is a principal investigator on a research grant funded by United 
Imaging Healthcare. 

1https://en.wikipedia.org/wiki/List_of_New_Zealand_urban_areas_by_population 
2https://en.wikipedia.org/wiki/New_Zealand 
3https://www.stuff.co.nz/national/health/300667942/new-mobile-cancer-scan-unit-hitting-the-road-to-help-ease-barriers-waittimes  
4https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS?locations=NZ  
5https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINE.html 
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Based on the IMAGINE database developed by the 
International Atomic Energy Agency (IAEA), the number of 
PET scanners in a high-income country such as New Zealand 
is expected to be 3.6 per million of population5. Based on 
this, New Zealand would be expected to have around 14 
PET/CT scanners.   

At Mercy Radiology we recognised that this underutilisation 
of PET/CT scanners is driven by two major 
constraints.  First, being a sparsely populated country, there 
are geographical barriers to accessing a PET/CT facility. 
Rural New Zealanders are often expected to travel 
significant distances between their homes and the closest 
PET/CT facility. For instance, a patient who lives in the town 
of Gisborne, on the east coast of North Island will need 
travel 380km to access a PET/CT facility in Hamilton, a five-
hour journey on the road. As a result of this geographical 
barrier, New Zealanders who live in the regions or remote 
areas are more likely to encounter obstacles to early 
detection of and treatment for their cancer.    

Secondly, the collective capacity of the current fleet of 
PET/CT scanners scattered throughout the country is 
woefully inadequate to service the demand for PET/CT 
scans. An appointment for a PET/CT scan can be up to 10 to 
15 business days wait time.  

 

2. Mercy Radiology goals and journey 
In 2019, Mercy Radiology set two goals to address the 
chronic underutilisation and inequality in access to PET/CT 
scans in New Zealand.   

Our first goal is capacity expansion. Having operated a 
solitary PET/CT scanner for the last 12 years, it was apparent 
that we had reached the limit of what we were able to 
achieve with our preexisting centre.  

Our second goal is to improve accessibility. This applies for 
not only our patients who live in the greater Auckland 
region but also patients who live in the rural areas of New 
Zealand.     

So why have we set these lofty goals for ourselves?   

Simply put, we believe New Zealanders deserve the best 
oncological imaging available when they are diagnosed with 
cancer so that they can be optimally managed to achieve 
the best possible health outcomes.   

An additional PET/CT scanner at a sister site remote to our 
preexisting facility is a logical solution to expand our 
capacity and to derisk our reliance on a solitary PET/CT 
scanner. A pre-requisite for the additional PET/CT scanner is 
that it must deliver improved image quality in less time than 
our current 10-year-old scanner.  

From the outset, our evaluation team was convinced that a 
digital PET camera with increased sensitivity and superior 
signal-to-noise ratio compared to an analog scanner would 
be capable of fulfilling these criteria and future proof the 
installed base.  

A second facility would shorten the period patients would 
have to wait for their examination from 10 working days to 
three to five days. A digital PET camera coupled with a 
longer axial field of view would translate to fewer bed 
positions and therefore a shortened PET acquisition time. 
This would improve patient comfort and experience and 
increase overall patient throughput.  

A potential turnaround time of less than 24 hours would be 
facilitated by Mercy Radiology’s team of trained PET/CT 
readers. Ultimately, this would allow our clinicians and 
oncologists to have a complete picture of patients’ disease 
status and manage accordingly.  

Just as importantly, we wanted to work with a vendor who 
would be receptive to our specific needs. Local engineering 
support and excellent applications support fulfilled all the 
critical elements needed to achieve our objectives.  

There are many vendors with digital PET/CT offerings and 
excellent service. How did we end up with two of United 
Imaging’s uMI PET/CT scanners?   

First, there was good alignment of our objectives with 
United Imaging’s mission of providing greater access to 
PET/CT. United Imaging’s digital PET solution included other 
positive physical attributes, such as superior axial field of 
view and air-cooled systems.    

Secondly, United Imaging’s unique Software Upgrades for 
Life™ program speaks to their desire to ensure new 
innovations are available to all of their installed base. The 
program ensures all new systems have the same software 
and core technology. New upgrades are cascaded to their 
existing installed base.    

Third, United Imaging’s All In Configurations™ program 
means transparent costing without the need to navigate 

5https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINE.html 
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through multiple options which would typically increase the 
price of the scanner substantially beyond the starting base 
price.   

Ultimately, it was the digital PET camera’s superior image 
quality, further enhanced and optimised by United Imaging’s 
advanced PET AI algorithm in the form of uAI HYPER DLR 
and uAI HYPER DPR, which cemented our decision to 
proceed with United Imaging’s digital PET/CT scanners.   

In the midst of the pandemic in 2020, we commissioned our 
sister PET/CT site 25 minutes north of our current facility. 
This new PET/CT site caters to the 600,000 Aucklanders who 
reside north of the Auckland Harbour Bridge and over 
200,000 other patients in the northern province of 
Northland.   

Converting a preexisting building which previously housed 
medical consultation rooms and an operating theatre into a 
PET/CT facility with multiple uptake rooms and a hot lab 
with New Zealand’s strict quarantine rules in 2020 was no 
easy feat. Coupled with all the logistical difficulties of COVID 
restrictions and border closure in NZ, this was a project 
destined to be hampered by delays and logistical 
challenges.   

United Imaging demonstrated their commitment to the 
project by ensuring the PET/CT system arrived into the 
country on schedule. Overseas-based installation engineers 
and applications support personnel underwent mandatory 
2-week quarantine to be available at critical times during 
the commissioning phase. Happily, the facility was 
successfully delivered on time and on budget, with the first 
patient scanned in the latter half of 2020.  

In 2021, we turned our attention to our flagship site, where 
we had been operating an analog PET/CT scanner for the 
last 12 years. We had outgrown the facility due to increased 
patient numbers and the introduction of a theranostics 
service line in 2018. We took the opportunity to create a 
dedicated therapy suite that doubles as an additional 
uptake room, having anticipated a decreased scan time 
necessitating more uptake rooms.    

As our flagship site, it was critical for us to have a high 
performing, reliable system to cater for greater patient 
throughput. Our evaluation team, which included our lead 
technologist, undertook due diligence and applied rigour in 
an open tender process before eventually settling on the 
uMI 780.     

In the next 12 months, Mercy Radiology will work to further 
increase patient accessibility to PET/CT scans for our 
regional patients, by embarking on a project to deliver 
Australasia’s first mobile PET/CT.   

The custom designed trailer, incorporating a mobile uMI 550 
unit on board once commissioned, will travel every day to 
service the regions in the North Island of New Zealand, 
obviating the need for regional patients to travel for up to 
six hours simply to have a PET/CT scan.   

 

3. Mercy Radiology’s experience with 
United Imaging  

What has been our experience operating the uMI 550 and 
the uMI 780 so far?  

First, we can attest to the field reliability of the scanners. 
Outside of scheduled down time for preventative 
maintenance, we have had a 100% uptime thus far with 
both scanners.   

The United Imaging development team has been receptive 
to suggestions for workflow improvement.  Our fruitful 
relationship with them has now evolved into a collaboration 
to develop advanced AI algorithm to enhance and optimise 
Prostate Specific Membrane Antigen (PSMA) PET images.  

Secondly, in terms of image quality, our team has seen first-
hand the major step up from analog to digital cameras and 
the progressive image improvement with successive 
iteration of United Imaging’s AI algorithm. This is particularly 
striking when the same patient returns for their follow-up 
studies (see Figure 1-3) on the different platforms.   
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Figure 1. Whole body maximum intensity projection and axial image of a patient with metastatic renal cell carcinoma scanned on the now decommissioned analog 
PET/CT (injection dose: 242 MBq of 18F-FDG, 60 min uptake time, scan time: 2 min/bed position). 

 

 
 
Figure 2. MIP and axial image of the same patient scanned on uMI 550 with HYPER DLR AI PET algorithm (injection dose: 239 MBq of 18F-FDG, 60 min uptake time, scan time: 2 

min/bed position). 
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Figure 3. MIP and axial image of patient with metastatic renal cell carcinoma scanned on uMI 780 with latest generation HYPER DPR, AI PET algorithm (injection dose: 244 MBq 

of 18F-FDG, 60 min uptake time, scan time: 2 min/bed position). 

 

uAI HYPER DLR’s algorithm is based on deep learning 
through artificial neural networks. The algorithm improves 
signal to noise ratio by up to 50%, allowing shorter 
acquisition time if required. It is also effective in reducing 
image noise in patients with high BMI.  

uAI HYPER DPR builds on this, further enhancing the signal 
to noise ratio, accentuating lesion contrast and thus 
improving small lesion detectability. Compared with other 
possible AI algorithms, its unique advantage is that its 
networks were created using United Imaging’s uEXPLORER® 
data. HYPER DPR claims a 32% improvement on noise 
reduction, 66% improvement on image contrast and overall 
2.5 times improvement on SNR.   

As a result, HYPER DLR and HYPER DPR have delivered 
images of consistently high signal-to-noise ratio. PET images 
with low levels of background noise and improved lesion 
conspicuity are now the expectation, even in patients with 
high BMI. In line with United Imaging’s Software Upgrades 

for Life program, the uAI HYPER DPR algorithm has been 
cascaded into our two-year-old uMI 550.  

Third, Mercy Radiology’s in-house applications “superuser”, 
trained in United Imaging’s USA headquarters in Houston, 
Texas, now also serves as our applications support and 
provides support to other Australasian users. Our 
technologists have found United Imaging’s platform to be 
user friendly and intuitive to operate. Combined with 30 cm 
axial field of view, the uMI 780 provides for an efficient 
workflow and has significantly increased our overall patient 
throughput.  

Finally, we have expanded our capacity! PET acquisitions 
that previously required 25 minutes are now completed in 
15 minutes or less on the new uMI 780, freeing up more 
appointment times and facilitating greater patient 
throughput.   

With the uMI 550 and uMI 780, and a mobile uMI 550 in the 
pipeline, Mercy Radiology, in partnership with United 
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Imaging, is well on the way to achieving our twin goals of 
increasing capacity and improving PET/CT accessibility to the 
people of Aotearoa New Zealand.   

 

 

4. Image/Figure Courtesy 
All images are the courtesy of Mercy Radiology, Auckland, 
New Zealand. 
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